精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.
相切
设抛物线焦点弦为AB,中点为M,准线为l,A1、B1分别为A、B在直线l上的射影,则|AA1|=|AF|,|BB1|=|BF|,于是M到l的距离d=(|AA1|+|BB1|)=(|AF|+|BF|)=|AB|=半径,故相切.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点分别为交于两点(为坐标原点),且.
(1)求抛物线的方程;
(2)过点的直线交的下半部分于点,交的左半部分于点,点坐标为,求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线k>0)与抛物线相交于两点,的焦点,若,则k的值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.

(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求·的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知Rt△AOB的三个顶点都在抛物线y2=2px上,其中直角顶点O为原点,OA所在直线的方程为y=x,△AOB的面积为6,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的中心在原点,焦点在x轴上,若的一个焦点与抛物线的焦点重合,且抛物线的准线交双曲线所得的弦长为4,则双曲线的实轴长为(   )
A.6B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2=20的两条渐近线围成的三角形的面积等于4,则抛物线的方程为(  )
A.y2=4xB.x2=4y
C.y2=8xD.x2=8y

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面上有三个点A(-2,y),B(0,),C(x,y),若,则动点C的轨迹方程是_________.

查看答案和解析>>

同步练习册答案