【题目】(本题分)
已知定义在上的两个函数, 图象有公共点,且在公共点处的切线相同.
(Ⅰ)用表示.
(Ⅱ)求证: .
【答案】详见解析
【解析】试题分析:(Ⅰ)设出两曲线的公共点坐标,分别求出f(x)和g(x)的导函数,把设出点的坐标代入两导函数中得到两关系式,联立两关系式即可解出公共点的横坐标,把求出的横坐标代入得到用a表示出b的式子;
(Ⅱ)设F(x)=f(x)﹣g(x),求出F(x)的导函数,根据导函数的正负得到F(x)的单调区间,由x大于0和函数的增减性得到F(x)的最小值为0,即f(x)﹣g(x)大于等于0,得证.
试题解析:
(Ⅰ)设与公共点处的切线相同.
∵, ,
由题意, ,
即,
得或(舍去),
即有.
(Ⅱ)证明:设,
则, ,
故在为减函数,在为增函数,
所以函数在上有最小值, ,
故当时,有,
即当时, .
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半径为2的圆内有两条圆弧,一质点M自点A开始沿弧A-B-C-O-A-D-C做匀速运动,则其在水平方向(向右为正)的速度的图像大致为( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·武昌调研)如图,在圆内画1条线段,将圆分成2部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成11部分.则
(1)在圆内画5条线段,将圆最多分割成________部分;
(2)在圆内画n条线段,将圆最多分割成________部分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P—A1B1C1D1,下部的形状是正四棱柱ABCD—A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A是x轴正半轴上的任一点,且,点B在射线ON上运动.
(1)若点,当为直角三角形时,求的值;
(2)若点,求点A关于射线的对称点P的坐标;
(3)若,C为线段AB的中点,若Q为点C关于射线ON的对称点,求点的轨迹方程,并指出x、y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M为AD的中点,N为PC上一点,且PC=3PN.
(1)求证:MN∥平面PAB;
(2)求点M到平面PAN的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交于两点,点关于原点的对称点为,若点总在以线段为直径的圆内,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com