精英家教网 > 高中数学 > 题目详情
8.若$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,$\overrightarrow{PB}$=4$\overrightarrow{AP}$,$\overrightarrow{OP}$=me1+ne2,则m-n等于(  )
A.$\frac{1}{4}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 根据向量减法的三角形法则,可将$\overrightarrow{PB}$=4$\overrightarrow{AP}$,化为:$\overrightarrow{OB}$-$\overrightarrow{OP}$=4($\overrightarrow{OP}$-$\overrightarrow{OA}$),进而可得$\overrightarrow{OP}$=$\frac{12}{5}$e1+$\frac{7}{5}$e2,进而得到答案.

解答 解:∵$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2
又∵$\overrightarrow{PB}$=4$\overrightarrow{AP}$,
∴$\overrightarrow{OB}$-$\overrightarrow{OP}$=4($\overrightarrow{OP}$-$\overrightarrow{OA}$),
∴5$\overrightarrow{OP}$=4$\overrightarrow{OA}$+$\overrightarrow{OB}$=12e1+7e2
∴$\overrightarrow{OP}$=$\frac{12}{5}$e1+$\frac{7}{5}$e2
∴m=$\frac{12}{5}$,n=$\frac{7}{5}$
∴m-n=1,
故选:B

点评 本题考查的知识点是向量的线性运算,平面向量的基本定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(1)+f(2)+…+f(2012)=(  )
A.2011B.$\frac{4023}{2}$C.2012D.$\frac{4025}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2sinx,sinx),$\overrightarrow{b}$=(sinx,2$\sqrt{3}$cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且2acosB=bcosC+ccosB,若对任意满足条件的A,不等式f(A)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x∈R,则函数f(x)=3-5sinx-cos2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinA•5sinC.
(I)若a=b,求cosB;
(Ⅱ)设B=90°,且a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等比数列{an}中,a1=$\frac{1}{4}$,8a2,3a3,a4成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=log16an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平行四边形ABCD的三个顶点为A(-3,0),B(2,-2),C(5,2),且对角线交点为M,求顶点D的坐标及点M坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$),g(x)的图象与f(x)的图象关于y轴对称,将g(x)图象上各点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再向左平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{2}$C.x=-$\frac{π}{6}$D.x=-π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,a,b,c分别是角A,B,C的对边,已知$\overrightarrow{m}$=(2sinA,-3),$\overrightarrow{n}$=(sinA,1+cosA),满足$\overrightarrow{m}$⊥$\overrightarrow{n}$,且$\sqrt{7}$(c-b)=a.
(1)求角A的大小;
(2)求cos(C-$\frac{π}{6}$)的值.

查看答案和解析>>

同步练习册答案