精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边长分别是a,b,c.

(1)若sin C + sin(B-A)= sin 2A,试判断△ABC的形状;

(2)若△ABC的面积S = 3,且c =,C =,求a,b的值.

 

【答案】

(1)△ABC为直角三角形或等腰三角形(2)

【解析】本试题主要是考查了解三角形的运用。

(1)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC的形状的形状加以判断,可以得到结论

(2)结合三角形的面积公式和余弦定理得到结论。

解(1)由题意得 sin(B + A)+ sin(B-A)= sin 2A,

sin B cos A = sin A cos A,即 cos A(sin B-sin A)= 0,

cosA = 0  或 sin B = sin A.                           …… 3分

因A,B为三角形中的角,于是或B = A.

所以△ABC为直角三角形或等腰三角形.                   …… 5分

(2)因为△ABC的面积等于 3,所以 ,得 ab = 12.

由余弦定理及已知条件,得 a2 + b2-ab = 13.

联立方程组 解得       …………… 10分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案