精英家教网 > 高中数学 > 题目详情
16.过抛物线y2=4x的焦点F的直线交该抛物线于A,B(A在第一象限) 两点,O为坐标原点,若△AOB的面积为$2\sqrt{2}$,则$\frac{{|{AF}|}}{{|{BF}|}}$的值为(  )
A.$2±\sqrt{2}$B.$3±2\sqrt{2}$C.$4±2\sqrt{3}$D.$4±2\sqrt{2}$

分析 求出抛物线的焦点,设直线l为x=my+1,代入抛物线方程,运用韦达定理和向量的坐标表示,解得m,再由三角形的面积公式,计算即可得到.

解答 解:抛物线y2=4x的焦点为(1,0),
设直线l为x=my+1,代入抛物线方程可得y2-4my-4=0,
设A(x1,y1),B(x2,y2),
则y1+y2=4m,y1y2=-4,
设$\overline{AF}$=t$\overrightarrow{FB}$,可得y1=-ty2
由代入法,可得y1=-$\frac{4mt}{1-t}$,y2=$\frac{4m}{1-t}$,m2=$\frac{(1-t)^{2}}{4t}$
∵△AOB的面积为$2\sqrt{2}$,
∴$\frac{1}{2}•1•$|-$\frac{4mt}{1-t}$-$\frac{4m}{1-t}$|=$2\sqrt{2}$,
化简可得t2-6t+1=0,
∴t=3±2$\sqrt{2}$,
故选:B.

点评 本题考查直线和抛物线的位置关系的综合应用,主要考查韦达定理和向量的共线的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

已知复数.试求实数分别为什么值时,分别为:(1)实数;(2)虚数;(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一几何体的三视图如图所示,则该几何体的体积为4;表面积为12+3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高校在2015年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示
(Ⅰ)根据频率分布直方图计算出样本数据的众数和中位数;(结果保留1位小数)
(Ⅱ)为了能选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
( III)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,BE平分∠ABC,AD与BE交于点P,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ等于(  )
A.$\frac{1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}-1}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知各项为正数的等差数列{an}的前n项和为Sn,a1=3,a2•a3=S5
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{S_n}-n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,点Q($\frac{a^2}{{\sqrt{{a^2}-{b^2}}}}$,0)在直线l:x=2上.
(1)求椭圆C的标准方程;
(2)若O为坐标原点,P为直线l上一动点,过点P作直线l′与椭圆相切于点A,求△POA面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求经过A(-1,2)且与直线2x-3y+4=0垂直的直线l的方程;
(2)求经过A(5,2),B(3,-2)且圆心在直线2x-y-3=0上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数据x1,x2,…xn的平均数为$\overline{x}$,方差为S2,则数据3x1-1,3x2-1,…3xn-1的方差是(  )
A.S2B.3S2C.9S2D.9S2-6S+1

查看答案和解析>>

同步练习册答案