精英家教网 > 高中数学 > 题目详情
已知下列不等式:

x2+3>2x(xR);②a5+b5a3b2+a2b3(a,bR);③a2+b2≥2(a-b-1).

其中正确的命题个数是(  )

A.0                              B.1                           C.2                              D.3

解析:①③是成立的,证法如下:?

x2+3-2x=(x-1)2+2>0;?

a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0.?

对于②,有a5+b5-(a3b2+a2b3)=(a-b2a+b)(a2+ab+b2)=(a-b2a+b)[(a+2+b2],只有当a+b≥0时,才能够成立.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1
a
1
b
<0
,已知下列不等式中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对a,b>0,a≠b,已知下列不等式成立:
①2ab<a2+b2
②ab2+a2b<a3+b3
③ab3+a3b<a4+b4
④ab4+a4b<a5+b5
(Ⅰ)用类比的方法写出
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
a5b+ab5<a6+b6(或a4b2+a2b4<a6+b6或2a3b3<a6+b6
<a6+b6
(Ⅱ)若a,b>0,a≠b,证明:a2b3+a3b2<a5+b5
(Ⅲ)将上述不等式推广到一般的情形,请写出你所得结论的数学表达式(不证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列不等式:1+
1
2
+
1
3
>1
,1+
1
2
+…
+
1
7
3
2
,1+
1
2
+
1
3
+…+
1
15
>2,…则由以上不等式推测到一个一般的结论为
1+
1
2
+
1
3
+…+
1
2n-1
n
2
1+
1
2
+
1
3
+…+
1
2n-1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

1
a
1
b
<0
,已知下列不等式:①a+b<ab;②|a|>|b|;③a<b;④
b
a
+
a
b
>2
;⑤a2>b2;⑥2a>2b,其中正确的不等式的序号为
①④⑥
①④⑥

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列不等式:

x2+3>2x(x∈R);②a5+b5a3b2+a2b3(a,b∈R);③a2+b2≥2(a-b-1).

其中正确的命题个数是(  )

A.0                 B.1               C.2                 D.3

查看答案和解析>>

同步练习册答案