精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,离心率等于,该椭圆的一个长轴端点恰好是抛物线的焦点.

1)求椭圆的方程;

2)已知直线与椭圆的两个交点记为,其中点在第一象限,点是椭圆上位于直线两侧的动点.运动时,满足,试问直线的斜率是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】(1)

(2)为定值,定值.

【解析】

1)由题意可求出抛物线的焦点坐标,即为的值,再根据离心率等于,及的关系即可求出

2)由题意,即直线与直线斜率存在且斜率之和为0,可设的斜率为,表示出直线与直线的方程,分别联立直线方程与椭圆方程,即可用含的式子表示两点的坐标特征,即可求出直线的斜率。

1)因为抛物线焦点为,所以

,∴

,所以.

所以椭圆的方程为.

2)由题意,当时,知斜率存在且斜率之和为0.

设直线的斜率为,则直线的斜率为,记

直线与椭圆的两个交点

的方程为,联立

由已知知恒成立,所以

同理可得.

所以

所以.

所以的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fx)是二次函数,且f0=0fx+1=fx+x+1

1)求fx)的表达式;

2)若fx)>ax∈[﹣11]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新能源汽车的春天来了!201835日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自201811日至20201231日,对购置的新能源汽车免征车辆购置税.某人计划于20185月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解了近五个月的实际销量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份编号

1

2

3

4

5

销量(万量)

0.5

0.6

1

1.4

1.7

1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测20185月份当地该品牌新能源汽车的销量;

22018612日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:

补贴金额预期值区间(万元)

频数

20

60

60

30

20

10

i)求这200位拟购买新能源汽车的消费者对补贴金额的心理预期值的方差及中位数的估计值(同一区间的预期值可用该区间的中点值代替,估计值精确到0.1);

ii)将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取的3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.

附:①回归直线的斜率和截距的最小二乘估计公式分别为:;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国传统文化中很多内容体现了数学的对称美.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的优美函数.给出下列命题:

①对于任意一个圆,其优美函数有无数个;

②函数可以是某个圆的优美函数

③正弦函数可以同时是无数个圆的优美函数

④函数优美函数的充要条件为函数的图象是中心对称图形.

A.①④B.①③④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数(,)的值域分别为,命题,命题,则下列命题中真命题的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面ABCD是直角梯形,AD//BCECD的中点,

1)证明:平面PBD平面ABCD

2)若PC与平面ABCD所成的角为,试问“在侧面PCD内是否存在一点N,使得平面PCD?”若存在,求出点N到平面ABCD的距离;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点O为极点,以x轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线l的极坐标方程为,若l分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

同步练习册答案