精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2≤0},若B⊆A,求实数a的取值范围.
A={x|x2-5x+4≤0}={x|1≤x≤4}.
设f(x)=x2-2ax+a+2,它的图象是一条开口向上的抛物线
(1)若B=ϕ,满足条件,此时△<0,即4a2-4(a+2)<0,
解得-1<a<2;
(2)若B≠ϕ,设抛物线与x轴交点的横坐标为x1,x2
且x1≤x2,欲使B⊆A,应有{x|x1≤x≤x2}⊆{x|1≤x≤4},
结合二次函数的图象,得
f(1)≥0
f(4)≥0
1≤-
-2a
2
≤4
△≥0

1-2a+a+2≥0
42-8a+a+2≥0
1≤a≤4
4a2-4(a+2)≥0
解得2≤a≤
18
7

综上可知a的取值范围是(-1,
18
7
]

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知y=2x2+kx+3在(-∞,3]上是减函数,在[3,+∞)上是增函数,则k的值是(  )
A.-6B.6C.-12D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,不等式:f(x)>2x+m恒成立,求实数m的范围.
(3)设g(t)=f(2t+a),t∈[-1,1],求g(t)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=x2+bx+b,其最小值为0,则b的值为(  )
A.0B.4C.0或4D.0或-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
在R上是单调递增函数,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果二次函数f(x)=3x2+bx+1在(-∞,-
1
3
]上是减函数,在[,+∞)上是增函数,则f(x)的最小值为(  )
A.-
11
12
B.-
2
3
C.
11
12
D.
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范围,使y=f(x)在闭区间[-1,3]上是单调函数;
(2)当a=-1时,求该函数在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a=(2
1
4
)
1
2
-(9.6)0-(3
3
8
)-
2
3
+(1.5)-2
,b=(log43+log83)(log32+log92),求a+2b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,
f(x)= (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案