精英家教网 > 高中数学 > 题目详情

数列{an}的通项公式为an=4n-1,令数学公式,则数列{bn}的前n项和为________.

n2+2n
分析:由an=4n-1,可知数列{an}为等差数列,从而可求得a1+a2+…+an,继而可求得bn与数列{bn}的前n项和.
解答:∵an=4n-1,
∴数列{an}是首项为3,公差为4的等差数列,设其前n项和为Sn,则Sn=a1+a2+…+an=
∴bn====2n+1,
∴{bn}为首项是3,公差为2的等差数列,
∴数列{bn}的前n项和为=n2+2n.
故答案为:n2+2n.
点评:本题考查等差数列的前n项和,求得bn也是等差数列是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记bn=(2n+1)•(
1Sn
+2)
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记数学公式,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为______.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高一(上)期末数学试卷(解析版) 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为   

查看答案和解析>>

同步练习册答案