精英家教网 > 高中数学 > 题目详情

若p(m,n)为600°角终边上一点,则数学公式=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:直接利用三角函数的定义,表示出=tan600°,然后利用诱导公式化简,求解即可.
解答:由三角函数的定义知
=tan600°=tan(360°+240°)=tan240°=tan60°=
故选D.
点评:本题是基础题,考查三角函数的定义,诱导公式的应用,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(Ⅰ)证明:BC⊥平面AMN;
(Ⅱ)求三棱锥N-AMC的体积;
(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,点M,N分别为PB,BC的中点,且PA⊥平面ABCD,AC与BD相交于点O.
(1)求证:MN⊥BD;
(2)若PA=1,求二面角M-AC-N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN∥面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥面AMN;
(2)在线段PD上是否存在一点E,使得NM∥面ACE;若存在,求出PE的长,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年北京市海淀区高考数学一模试卷(文科)(解析版) 题型:解答题

如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案