【题目】在直角坐标系中,曲线C1的参数方程为: (α为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2的极坐标方程为:ρ=cosθ. (Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若P,Q分别是曲线C1和C2上的任意一点,求|PQ|的最小值.
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数y=sin4x﹣cos4x的最小正周期是π;
② =tanα;
③函数y=sinx+cosx的图象均关于点( ,0)成中心对称;
④把函数y=3sin(2x+ )的图象向右平移 个单位得到y=3sin2x的图象.
其中正确命题的编号是 . (写出所有正确命题的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知角A、B、C所对的边分别为a、b、c,且a2+b2﹣c2= ab.
(1)求角C的大小;
(2)如果0<A≤ ,m=2cos2 ﹣sinB﹣1,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)当1<a<4时,函数f(x)在[2,4]上的最小值为ln ,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先把正弦函数y=sinx图象上所有的点向左平移 个长度单位,再把所得函数图象上所有的点的纵坐标缩短到原来的 倍(横坐标不变),再将所得函数图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),则所得函数图象的解析式是( )
A.y=2sin( x+ )
B.y= sin(2x﹣ )
C.y=2sin( x﹣ )
D.y= sin(2x+ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在半径为 ,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(1)将y表示成θ的函数关系式,并写出定义域;
(2)求矩形PNMQ的面积取得最大值时 的值;
(3)求矩形PNMQ的面积y≥ 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)
(1)若x= ,求 与 的夹角θ;
(2)若x∈[﹣ , ],f(x)=λ 的最大值为 ,求λ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①存在实数x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数y=sin( x+ )是偶函数;
④函数y=sin2x的图象向左平移 个单位,得到函数y=cos2x的图象.
其中正确命题的序号是(把正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示,在这些用户中,用电量落在区间[150,250)内的户数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com