精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,an+an+1=1(n∈N*),设Sn为数列{an}的前n项和,则S2007-2S2006+S2005的值为
 
分析:根据条件可知,当n为偶数时,Sn=
n
2
,当n奇数时,Sn=2+
n-1
2
=
n+3
2
,然后将所求代入即可得出答案.
解答:解:当n为偶数时,a1+a2=a3+a4=…=an-1+an=1,故Sn=
n
2

当n奇数时,a1=2,a2+a3=a4+a5=…=an-1+an=1,故Sn=2+
n-1
2
=
n+3
2

故S2007-2S2006+S2005=1005-2×1003+1004=3
故答案为3.
点评:本题考查了数列的求和,做题时尤其要注意分两种情况求出数列{an}的前n项和Sn.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案