精英家教网 > 高中数学 > 题目详情

【题目】长方形中, 中点(图1).将沿折起,使得(图2).在图2中:

(1)求证:平面 平面

2 求三棱锥的体积.

【答案】1见解析2

【解析】试题分析:

1)要证两平面垂直,就要证线面垂直,也就要证线线垂直,由长方形的条件可得,再结合已知垂直,可得平面,从而可得面面垂直;

2可知到平面的距离等于到平面的距离的,而到平面的距离,只要过,则的长就是到平面的距离,从而易求得棱锥的体积.

试题解析:

(1)长方形中,连结,在因为 中点,所以,从而,所以

因为 ,所以平面

因为平面,所以平面 平面

(2)设中点,连结,则

因为平面 平面,交线是,所以 平面

因为,所以到平面距离等于

因为,所以 面积为

所以三棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,抛物线的焦点为,射线与抛物线相交于点,与其准线相交于点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面半径为,母线长为的圆柱的轴截面是四边形,线段上的两动点 满足.点在底面圆上,且 为线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)四棱锥的体积是否为定值,若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在R上的函数,f′(x)是fx)的导函数,且满足f′(x)+fx)<0,设gx)=exfx),若不等式g(1+t2)<gmt)对于任意的实数t恒成立,则实数m的取值范围是( )

A. (﹣∞,0)∪(4,+∞) B. (0,1)

C. (﹣∞,﹣2)∪(2,+∞) D. (﹣2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点在倾斜角为的直线上,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.

(1)写出的参数方程及的直角坐标方程;

(2)设相交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,左焦点,直线与椭圆交于两点, 为椭圆上异于的点.

1)求椭圆的方程;

2)若,以为直径的圆点,求圆的标准方程;

3)设直线轴分别交于,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,,,,底面,,点在棱上,且

(1)证明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)数列{an}的前n项和为Sn10nn2,求数列{|an|}的前n项和.

2)已知等差数列{an}满足a20a6+a8=﹣10.求数列{}的前n项和.

查看答案和解析>>

同步练习册答案