【题目】设函数 . (Ⅰ)证明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求实数a的取值范围.
【答案】解:(Ⅰ)证明: ∵a>0,∴
(Ⅱ)由f(1)<6得: ,
∵a>0,∴ ,
①当a≥4时,不等式 无解;
②当a<4时,不等式 ,即 ,a>1,
所以1<a<4…
综上,实数a的取值范围是(1,4)
【解析】(Ⅰ) ≥5;(Ⅱ)由f(1)<6得 , , 分①当a≥4,②当a<4 求实数a的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法和不等式的证明的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号;不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是椭圆 上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1 , 三角形PDE的面积是S2 , 则 =( )
A.2
B.1
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,其左、右焦点分别为F1 , F2 , 离心率为 ,点R的坐标为 ,又点F2在线段RF1的中垂线上.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A1 , A2 , 点P在直线 上(点P不在x轴上),直线PA1 , PA2与椭圆C分别交于不同的两点M,N,线段MN的中点为Q,若|MN|=λ|A1Q|,求λ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0 , 2 )(x0> )为圆心的圆与线段MF相交于点A,且被直线x= 截得的弦长为 | |,若 =2,则| |= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足:x2﹣4ax+3a2<0(a>0),q:实数x满足:x=( )m﹣1 , m∈(1,2).
(1)若a= ,且p∧q为真,求实数x的取值范围;
(2)q是p的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com