精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),则数列{cn}的前100项和是________.

6000
分析:通过{an},{bn}都是等差数列,直接利用等差数列前n项和公式求出数列{cn}的前100项和即可.
解答:因为数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),
则数列{cn}的前100项和为:==6000.
故答案为:6000.
点评:本题是基础题,考查等差数列的前n项和的求法,考查计算能力,注意两个等差数列的和也是等差数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案