甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.
分析:(1)本题是一个古典概型,试验发生包含的甲、乙两人取出的数字共有6×6种等可能的结果,满足条件的事件可以通过列举法得到,根据古典概型的概率公式得到结果.
(2)要判断这种游戏是否公平,只要做出甲胜和乙胜的概率,先根据古典概型做出甲胜的概率,再由1减去甲胜的概率,得到乙胜的概率,得到两个人胜的概率相等,得到结论.
解答:解:(1)由题意知本题是一个古典概型,
试验发生包含的甲、乙两人取出的数字共有6×6=36(个)等可能的结果,
设“两个编号和为8”为事件A,
则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,
根据古典概型概率公式得到
P(A)=(2)这种游戏规则是公平的.
设甲胜为事件B,乙胜为事件C,
则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),
(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),
(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),
(6,4),(6,6)
∴甲胜的概率
P(B)==,
乙胜的概率
P(C)=1-==P(B)
∴这种游戏规则是公平的.
点评:本题考查古典概型及其概率公式,考查利用列举法得到试验包含的所有事件,考查利用概率知识解决实际问题,本题好似一个典型的概率题目.