精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)当AB=2时,求三棱锥的体积;

(2)求证:BM⊥AD.

【答案】(1);(2)见解析

【解析】试题分析:(1)取AM的中点N,连接DN,易证得DN⊥平面ABCM,由,只需计算即可;

(2)可证BM⊥DN和BM⊥AM,从而证得BM⊥平面ADM,从而得证.

试题解析:

(1)取AM的中点N,连接DN.

∵在矩形中,为DC的中点,AB=2AD,∴DM=AD.

又N为AM的中点,∴DN⊥AM.

又∵平面ADM⊥平面ABCM,平面平面ADM,

∴DN⊥平面ABCM.

∵AD=1,∴.

,∴.

证明:(2)由(1)可知,DN⊥平面ABCM.

平面ABCM,∴BM⊥DN.

在矩形中,AB=2AD,M为MC中点,

∴△ADM,△BCM都是等腰直角三角形,且∠ADM=90°,∠BCM=90°,∴BM⊥AM.

又DN,平面ADM,,∴BM⊥平面ADM.

平面ADM,∴BM⊥AD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆,其中,焦距为2,过点的直线l与椭圆C交于点A,B,点B在A,M之间.又线段AB的中点的横坐标为,且.

(1)求椭圆C的标准方程.

(2)求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,在三棱锥PABC中,PA⊥底面ABCPAAB,∠ABC=60°,∠BCA=90°,点DE分别在棱PBPC上,且DEBC.

(1)求证:BC⊥平面PAC

(2)当DPB的中点时,求AD与平面PAC所成的角的正弦值;

(3)是否存在点E,使得二面角ADEP为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是正方体的棱的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).

①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形;②点在直线上运动时,总有;③点在直线上运动时,三棱锥的体积的定值;④若点是正方体的面内的一动点,且到点距离相等,则点的轨迹是一条线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线,(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的普通方程;

(2)若分别为曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在x=2处取得极值,求的极大值;

(2)若成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某超市的一种商品在过去的一个月内(以30天计算),销售价格与时间(天)的函数关系近似满足,销售量与时间(天)的函数关系近似满足

1)试写出该商品日销售金额关于时间的函数表达式;

2)求该商品的日销售金额的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

(1)若,且为整数,求的概率;

(2)若,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红铃虫的产卵数y和温度x有关,现收集了6组观测数据于下表中,通过散点图可以看出样本点分布在一条指数型函数y=的图象的周围.

(1)试求出y关于x的上述指数型的回归曲线方程(结果保留两位小数);

(2)试用(1)中的回归曲线方程求相应于点(24,17)的残差.(结果保留两位小数)

温度x(°C)

20

22

24

26

28

30

产卵数y()

6

9

17

25

44

88

z=lny

1.79

2.20

2.83

3.22

3.78

4.48

几点说明:

①结果中的都应按题目要求保留两位小数.但在求时请将的值多保留一位即用保留三位小数的结果代入.

②计算过程中可能会用到下面的公式:回归直线方程的斜率==,截距.

③下面的参考数据可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.

查看答案和解析>>

同步练习册答案