精英家教网 > 高中数学 > 题目详情
曲线C上的点P到定点N(2,0)的距离与到直线x=-2的距离相等.
(Ⅰ)求点P的轨迹C方程;
(Ⅱ)过点E(8,0)的直线交曲线C于两点A、B,求证:∠AOB=90°(O是坐标原点).
分析:(Ⅰ)由抛物线的定义可得曲线C上的每一点到定点F(2,0)的距离与到定直线l:x=-2的距离相等的点的轨迹为焦点在x轴上,以F(2,0)为焦点的抛物线,从而可求
(Ⅱ)设直线为x=my+8,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量数量积的坐标公式即可求得结果,从而解决问题.
解答:解:(Ⅰ)∵曲线C上的每一点到定点F(2,0)的距离与到定直线l:x=-2的距离相等,
∴轨迹为焦点在x轴上,以F(2,0)为焦点的抛物线
标准方程为:y2=8x
(II)设过E(8,0)的直线为x=my+8,代入抛物线得y2-8my-64=0,
设直线与抛物线交与A(x1,y1),B(x2,y2),
OA
OB
=x1x2+y1y2=
(y1y2)2
64
-64=0
,即OA⊥OB.
∴∠AOB=90°.
点评:本题主要考查了利用抛物线的定义求解抛物线的方程,解题(I)的关键是灵活应用抛物线的定义,还考查的直线与抛物线的相交的问题,常见的处理方法是联立方程,根据方程的根满足的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C的参数方程是
x=5cosφ
y=2
6
sinφ
(φ为参数),则曲线C上的点P到定点M(-2,0)的最大距离是(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线C上的点P到定点N(2,0)的距离与到直线x=-2的距离相等.
(Ⅰ)求点P的轨迹C方程;
(Ⅱ)过点E(8,0)的直线交曲线C于两点A、B,求证:∠AOB=90°(O是坐标原点).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省杭州市学军中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题

曲线C上的点P到定点N(2,0)的距离与到直线x=-2的距离相等.
(Ⅰ)求点P的轨迹C方程;
(Ⅱ)过点E(8,0)的直线交曲线C于两点A、B,求证:∠AOB=90°(O是坐标原点).

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:圆锥曲线(2)(解析版) 题型:选择题

已知曲线C的参数方程是(φ为参数),则曲线C上的点P到定点M(-2,0)的最大距离是( )
A.9
B.8
C.7
D.6

查看答案和解析>>

同步练习册答案