精英家教网 > 高中数学 > 题目详情
(2009•上海模拟)随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x人,则留岗职员每人每年多创利0.1x万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?
分析:设裁员x人,可获得的经济效益为y万元,y=(2a-x)(b+0.01bx)-0.4bx,配方,根据函数的定义域,结合对称轴,可进行分类讨论,从而求y的最大值.
解答:解:设裁员x (x∈(0,50]x∈N*)人,可获得的经济效益为y万元,则由题意,
y=(2a-x)(10+0.1x)-4x(5分)=-
1
10
[x2-2(a-70)x]+20a
x∈(0,50]x∈N*(6分)
当0<a-70≤50,即70<a≤120时,x=a-70,y取到最大值;    (9分)
当a-70>50,即120<a<210时,x=50,y取到最大值;(12分)
答:当 70<a≤120时,公司应裁员a-70人,经济效益取到最大值;
当120<a<210,公司应裁员50人,经济效益取到最大值(14分)
点评:本题以实际问题为载体,考查函数的运用,注意分类讨论,并联系二次函数图象是求函数最大值的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•上海模拟)在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式2ax2-12x-3>0的解集构成的区间的长度为
6
,求实数a的值;
(2)已知关于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集构成的各区间的长度和超过
π
3
,求实数b的取值范围;
(3)已知关于x的不等式组
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集构成的各区间长度和为6,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),从集合B中任取一元素,则该元素的模为
2
的概率为
2
7
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(1)证明:数列{yn}是等差数列;
(2)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(3)对上述等腰三角形AnBnAn+1添加适当条件,提出一个问题,并做出解答.(根据所提问题及解答的完整程度,分档次给分)

查看答案和解析>>

同步练习册答案