£¨2012•Î人ģÄ⣩Èçͼ£¬ÒÑÖªÍÖÔ²¦££º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬QÊÇÍÖÔ²ÍâµÄÒ»¸ö¶¯µã£¬Âú×ã|F1Q|=2a£®µãPÊÇÏ߶ÎF1QÓë¸ÃÍÖÔ²µÄ½»µã£¬µãMÔÚÏ߶ÎF2QÉÏ£¬ÇÒÂú×ã
PM
MF2
=0£¬|
MF2
|¡Ù0£®
£¨¢ñ£©ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©Éè²»¹ýÔ­µãOµÄÖ±ÏßlÓë¹ì¼£C½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OABÃæ»ýµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÓÉ£¨¢ò£©Çó½âµÄ½á¹û£¬ÊÔ¶ÔÍÖÔ²¦£Ð´³öÀàËƵÄÃüÌ⣮£¨Ö»Ðèд³öÀàËƵÄÃüÌ⣬²»±Ø˵Ã÷ÀíÓÉ£©
·ÖÎö£º£¨¢ñ£©ÉèM£¨x£¬y£©Îª¹ì¼£CÉϵÄÈÎÒâÒ»µã£®·ÖÀàÌÖÂÛ£¬µ±|
PM
|=0ʱ£¬µã£¨a£¬0£©ºÍµã£¨-a£¬0£©Ôڹ켣CÉÏ£¬µ±|
PM
|¡Ù0ÇÒ|
MF2
|¡Ù0ʱ£¬ÓÉ
PM
MF2
=0£¬µÃ
PM
¡Í
MF2
£¬´Ó¶ø¿ÉÖµMΪÏ߶ÎF2QµÄÖе㣬½ø¶ø¿ÉÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ
y=kx+m
x2+y2=a2
ÏûÈ¥y²¢ÕûÀí£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¿ÉÇóÖ±Ïß·½³Ì£¬´Ó¶ø¿ÉÇó¡÷OABÃæ»ý£¬½ø¶ø¿ÉµÃ¡÷OABÃæ»ýµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËƵÄÃüÌ⣺¡°Éè²»¹ýÔ­µãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄÈ¡Öµ·¶Î§Îª£¨0£¬
1
2
ab£©£®¡±
½â´ð£º½â£º£¨¢ñ£©ÉèM£¨x£¬y£©Îª¹ì¼£CÉϵÄÈÎÒâÒ»µã£®
µ±|
PM
|=0ʱ£¬µã£¨a£¬0£©ºÍµã£¨-a£¬0£©Ôڹ켣CÉÏ£®
µ±|
PM
|¡Ù0ÇÒ|
MF2
|¡Ù0ʱ£¬ÓÉ
PM
MF2
=0£¬µÃ
PM
¡Í
MF2
£®
ÓÖ|
PQ
|=|
PF2
|£¨Èçͼ£©£¬ËùÒÔMΪÏ߶ÎF2QµÄÖе㣮
ÔÚ¡÷QF1F2ÖУ¬|
OM
|=
1
2
|F1Q|=a£¬ËùÒÔÓÐx2+y2=a2£®
×ÛÉÏËùÊö£¬µãMµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=a2£®¡­£¨4·Ö£©
£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬
¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ
y=kx+m
x2+y2=a2
ÏûÈ¥y²¢ÕûÀí£¬µÃ
£¨1+k2£©x2+2kmx+m2-a2=0£¬
Ôò¡÷=4k2m2-4£¨1+k2£©£¨m2-a2£©=4£¨k2a2+a2-m2£©£¾0£¬
ÇÒx1+x2=
-2km
1+k2
£¬x1x2=
m2-a2
1+k2
£®
¡ày1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£®
¡ßÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à
y1
x1
y
x2
=
k2x1x2+km(x1+x2)+m2
x1x2
=k2£¬
¼´
-2k2m2
1+k2
+m2=0£¬ÓÖm¡Ù0£¬
¡àk2=1£¬¼´k=¡À1£®
ÉèµãOµ½Ö±ÏßlµÄ¾àÀëΪd£¬Ôòd=
|m|
k2+1
£¬
¡àS¡÷OAB=
1
2
|AB|d=
1
2
1+k2
|x1-x2|•
|m|
k2+1

=
1
2
|x1-x2||m|=
1
2
m2(2a2-m2)
£®
ÓÉÖ±ÏßOA£¬OBµÄбÂÊ´æÔÚ£¬ÇÒ¡÷£¾0£¬µÃ0£¼m2£¼2a2ÇÒm2¡Ùa2£¬
¡à0£¼
m2(2a2-m2)
£¼
m2+(2a2-m2)
2
=a2£®
¹Ê¡÷OABÃæ»ýµÄÈ¡Öµ·¶Î§Îª£¨0£¬
1
2
a2£©£®¡­£¨10·Ö£©
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËƵÄÃüÌ⣺¡°Éè²»¹ýÔ­µãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄÈ¡Öµ·¶Î§Îª£¨0£¬
1
2
ab£©£®¡±¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¿¼²éÇóÈý½ÇÐεÄÃæ»ý£¬¿¼²éÀà±È˼Ï룬½âÌâµÄ¹Ø¼üÊÇÍÚ¾òÒþº¬Ìõ¼þ£¬ÕýÈ·±íʾÈý½ÇÐεÄÃæ»ý£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Î人ģÄ⣩ÈçͼÊÇÒ»Õý·½Ìå±»¹ýÀâµÄÖеãM¡¢N£¬¶¥µãAºÍN¡¢¶¥µãD¡¢C1µÄÁ½ÉϽØÃæ½ØÈ¥Á½¸ö½ÇºóËùµÃµÄ¼¸ºÎÌ壬Ôò¸Ã¼¸ºÎÌåµÄÕýÊÓͼΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Î人ģÄ⣩ÌìÆøÔ¤±¨Ëµ£¬ÔÚ½ñºóµÄÈýÌìÖУ¬Ã¿Ò»ÌìÏÂÓêµÄ¸ÅÂʾùΪ40%£®ÏÖ²ÉÓÃËæ»úÄ£ÄâÊÔÑéµÄ·½·¨¹À¼ÆÕâÈýÌìÖÐÇ¡ÓÐÁ½ÌìÏÂÓêµÄ¸ÅÂÊ£ºÏÈÀûÓüÆËãÆ÷²úÉú0µ½9Ö®¼äÈ¡ÕûÊýÖµµÄËæ»úÊý£¬ÓÃ1£¬2£¬3£¬4±íʾÏÂÓ꣬ÓÃ5£¬6£¬7£¬8£¬9£¬0±íʾ²»ÏÂÓꣻÔÙÒÔÿÈý¸öËæ»úÊý×÷Ϊһ×飬´ú±íÕâÈýÌìµÄÏÂÓêÇé¿ö£®¾­Ëæ»úÄ£ÄâÊÔÑé²úÉúÁËÈçÏÂ20×éËæ»úÊý£º
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
¾Ý´Ë¹À¼Æ£¬ÕâÈýÌìÖÐÇ¡ÓÐÁ½ÌìÏÂÓêµÄ¸ÅÂʽüËÆΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Î人ģÄ⣩F1¡¢F2ÊÇË«ÇúÏß
x2
16
-
y2
20
=1
µÄ½¹µã£¬µãPÔÚË«ÇúÏßÉÏ£¬ÈôµãPµ½½¹µãF1µÄ¾àÀëµÈÓÚ9£¬ÔòµãPµ½½¹µãF2µÄ¾àÀëµÈÓÚ
17
17
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Î人ģÄ⣩ÒÑÖªº¯Êýf(x)=
lnx
x
-1
£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Éèm£¾0£¬Çóº¯Êýf£¨x£©ÔÚ[m£¬2m]ÉϵÄ×î´óÖµ£»
£¨3£©Ö¤Ã÷£º¶Ô?n¡ÊN*£¬²»µÈʽln(
2+n
n
)£¼
2+n
n
ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Î人ģÄ⣩Èô¸´ÊýzÂú×㣨2-i£©z=1+i£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãµÄ×ø±êΪ
£¨
1
5
£¬
3
5
£©
£¨
1
5
£¬
3
5
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸