精英家教网 > 高中数学 > 题目详情
(2013•揭阳二模)已知函数f(x)=
1
x-ln(x+1)
,则y=f(x)的图象大致为(  )
分析:利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.
解答:解:令g(x)=x-ln(x+1),则g′(x)=1-
1
x+1
=
x
x+1

由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,
由g'(x)<0得-1<x<0,即函数g(x)在(-1,0)上单调递减,
所以当x=0时,函数g(x)有最小值,g(x)min=g(0)=0,
于是对任意的x∈(-1,0)∪(0,+∞),有g(x)≥0,故排除B、D,
因函数g(x)在(-1,0)上单调递减,则函数f(x)在(-1,0)上递增,故排除C,
故选A.
点评:本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳二模)在等差数列{an}中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图所示,C,D是半圆周上的两个三等分点,直径AB=4,CE⊥AB,垂足为E,BD与CE相交于点F,则BF的长为
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)在图(1)所示的长方形ABCD中,AD=2AB=2,E、F分别为AD、BC的中点,M、N两点分别在AF和CE上运动,且AM=EN=a(0<a<
2
)
.把长方形ABCD沿EF折成大小为θ的二面角A-EF-C,如图(2)所示,其中θ∈(0,
π
2
]

(1)当θ=45°时,求三棱柱BCF-ADE的体积;
(2)求证:不论θ怎么变化,直线MN总与平面BCF平行;
(3)当θ=900a=
2
2
.时,求异面直线MN与AC所成角的余弦值.

查看答案和解析>>

同步练习册答案