精英家教网 > 高中数学 > 题目详情

【题目】某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是(

A.
B.
C.
D.

【答案】A
【解析】解:由频率分布直方图可知:第一组的频数为20×0.01×5=1个,
[0,5)的频数为20×0.01×5=1个,
[5,10)的频数为20×0.01×5=1个,
[10,15)频数为20×0.04×5=4个,
[15,20)频数为20×0.02×5=2个,
[20,25)频数为20×0.04×5=4个,
[25,30)频数为20×0.03×5=3个,
[30,35)频数为20×0.03×5=3个,
[35,40]频数为20×0.02×5=2个,
则对应的茎叶图为A,
故选:A.
根据频率分布直方图,分别计算每一组的频数即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,平面平面,四边形是矩形, ,点在线段上.

(1)当为何值时, 平面?证明你的结论;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn= n,
(1)求通项公式an的表达式;
(2)令bn=an2n1 , 求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系: .(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量x为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,异面直线所成角等于.

(1)求证: 平面平面

(2)求直线和平面所成角的正弦值;

(3) 在棱上是否存在一点,使得平面与平面所成锐二面角的正切值为?若存在,指出点在棱上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)若从这天中随机抽取两天,求至少有天参加抽奖人数超过的概率;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计若该活动持续天,共有多少名顾客参加抽奖.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)设g(x)=2 cos2x+f(x),g(α)= + ,α∈( ),求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)若该分店此次抽奖活动自开业始,持续天,参加抽奖的每位顾客抽到一等奖(价值元奖品)的概率为,抽到二等奖(价值元奖品)的概率为,抽到三等奖(价值元奖品)的概率为.

试估计该分店在此次抽奖活动结束时送出多少元奖品?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

同步练习册答案