分析 (1)利用证明单调性的步骤方法即可得出;
(2)利用f(-x)+f(x)=0,基础即可.
(3)由(2)可知:f(x)=1-$\frac{2}{{5}^{x}+1}$,f(x)+λ+1=0化为λ=-2+$\frac{2}{{5}^{x}+1}$,利用函数的单调性即可得出λ的范围.
解答 解:(1)设 x1<x2且x1,x2∈R
则$f({x_1})-f({x_2})=m-\frac{2}{{{5^{x_1}}+1}}-(m-\frac{2}{{{5^{x_2}}+1}})=\frac{{2({5^{x_1}}-{5^{x_2}})}}{{({{5^{x_1}}+1})({{5^{x_2}}+1})}}$,
∵x1<x2,
∴${5}^{{x}_{1}}$+1>0,${5}^{{x}_{2}}$+1>0,${5}^{{x}_{1}}-{5}^{{x}_{2}}$<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在R上单调递增.
(2)∵f(x)是R上的奇函数,
∴$f(x)+f(-x)=m-\frac{2}{{{5^x}+1}}+m-\frac{2}{{{5^{-x}}+1}}=0$,
即$2m-(\frac{2}{{{5^x}+1}}+\frac{{2×{5^x}}}{{{5^x}+1}})=0⇒2m-2=0$,
∴m=1.
(3)由(2)可知:f(x)=1-$\frac{2}{{5}^{x}+1}$,
f(x)+λ+1=0化为λ=-2+$\frac{2}{{5}^{x}+1}$,
当x=0时,λ=0;当λ=3时,λ=$-\frac{129}{65}$.
∵f(x)+λ+1=0在[0,3]上有解,
∴$-\frac{129}{65}$≤λ≤0.
∴λ的取值范围是$-\frac{129}{65}$≤λ≤0.
点评 本题考查了函数的奇偶性、单调性、函数的值域,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com