精英家教网 > 高中数学 > 题目详情

【题目】已知平面内的动点P到定直线lx的距离与点P到定点F(0)之比为.

(1)求动点P的轨迹C的方程;

(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB,交(1)中轨迹C于点AB,且直线ANBN的斜率都存在,分别为k1k2,问k1·k2是否为定值?

【答案】(1) (2) k1·k2=-

【解析】试题分析:1)设出点P,利用两点间的距离公式分别表示出P到定直线的距离和到点F的距离的比,建立方程求得xy的关系式,即P的轨迹方程.(2)设出NA,则B的坐标可知,代入圆锥曲线的方程相减后,可求得k1·k2=-证明原式.

试题解析:

(1)设点P(xy),依题意,有.整理,得1.所以动点P的轨迹C的方程为1.

(2)由题意,设N(x1y1)A(x2y2),则B(x2,-y2)

11.k1·k2·=-,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把正整数排成如图(a)的三角形阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形阵,现将图(b)中的正整数按从小到大的顺序构成一个数列{an},若ak=2017,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,an+1= Sn . 求证:
(1)数列{ }成等比;
(2)Sn+1=4an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是正方形, 平面 分别是 的中点.

1)求证:平面平面

2)在线段上确定一点,使平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆 的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求的方程;

(2)设过点的动直线相交于两点,当的面积最大时,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司购买了ABC三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8

(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;

(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;

(Ⅲ)再从ABC三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,bc(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为.若,写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

同步练习册答案