精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax2+bx(a,b为常数且a≠0)满足条件f(1+x)=f(1-x),且方程f(x)=x有相等实根.
f(x)的解析式为f(x)=-$\frac{1}{2}$x2+x.

分析 根据f(1+x)=f(1-x)可知f(x)关于直线x=1对称,又方程f(x)=x有两个相等实根可知判别式等于零,列出方程组,求出a和b的值,即可得到f(x)的解析式.

解答 解:∵f(1+x)=f(1-x),
∴f(x)的图象关于直线x=1对称,
∴f(x)的对称轴x=-$\frac{b}{2a}$=1,①
又f(x)=x,即ax2+(b-1)x=0有等根,
∴△=(b-1)2=0,②
由①②,解得a=-$\frac{1}{2}$,b=1,
故f(x)的解析式为:f(x)=-$\frac{1}{2}$x2+x.
故答案为:f(x)=-$\frac{1}{2}$x2+x.

点评 本题考查了函数解析式的求法,函数单调性的性质,重点研究有关于二次函数的性质.求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等.对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设二次函数f(x)=ax2+bx+c,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求函数f(x)的解析式及f(x)在区间[-2,2]上的最大值和最小值;
(2)若A={1},且a<0,解关于x的不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市调研后对甲、乙两个文科班的数学考试成绩进行分析,规定:大于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
  优秀非优秀 合计 
 甲班10   
乙班  30 
 合计   110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲方班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次掷一枚均匀的骰子,出现点数之和为被抽取人的序号.试求抽到9号或10号的概率.
附:参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k)0.250.150.100.050.0100.005
k1.3232.0722.7063.8456.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若数列{an},{bn},{cn}满足cn=$\left\{\begin{array}{l}{{a}_{n},n是奇数}\\{{b}_{n},n是偶数}\end{array}$,则称数列{cn}是数列{an}和{bn}的调和数列.已知数列{an}的通项为an=2n+n,数列{bn}满足$\left\{\begin{array}{l}{a_n}={b_n},n=1\\{a_{n-1}}+{a_n}=-{b_n},n≥2\end{array}$,若数列{an}和{bn}的调和数列{cn}的前n项和为Tn,则T8+T9=-199.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的方程$\frac{x+1}{x+2}$-$\frac{x}{x-1}$=$\frac{ax+2}{(x-1)(x+2)}$无解,求a的值为(  )
A.-5B.-$\frac{1}{2}$C.-5或-$\frac{1}{2}$D.-5或-$\frac{1}{2}$或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}为等差数列,{an}的前n项和为sn,a1=1,a3=5.
(1)求an与sn
(2)若数列{bn}为等比数列,且b1=a1,b2=a2,求bn及数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求证:{lgan}是等差数列;
(Ⅱ)设Tn是数列$\{\frac{3}{{(lg{a_n})(lg{a_{n+1}})}}\}$的前n项和,求Tn
(Ⅲ)若${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,求整数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的λ倍,则(  )
A.λ∈(0,1)B.λ∈(1,2)C.λ∈(2,3)D.λ∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A,B各有两个元素,A∩B中有一个元素,若集合C同时满足:(1)C⊆(A∪B),(2)C?(A∩B),则满足条件C的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案