精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[ ,e](e为自然对数的底数),使 ,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1 , y1),B(x2 , y2)(x1>x2>﹣1),使得H(x1)﹣H(x2)= ?请说明理由.

【答案】
(1)解:x0f(x0)≥g(x0)可化为

令h(x)=x2﹣2lnx,则

∴当x∈ 时,h'(x)<0;当x∈(1,e]时,h'(x)>0;

又∵ ,∴ ,则a≤e2﹣2


(2)解:H(x)=x2+2ln(x+1)﹣1,

故可化为 = ,即 =

又即 = ①,

,①式可化为

,∴u(t)在(1,+∞)上递增

∴u(t)≥u(1)=0;∴u(t)无零点,故A、B两点不存在


【解析】(1)x0f(x0)≥g(x0)可化为 , 构造h(x)=x2﹣2lnx,求出其值域即可.(2)
故可化为 = ,即 =
又即 = ①,
,①式可化为
,只需考查u(t)的值域即可.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+1)= ,且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数与雾霾天数进行统计分析,得出下表数据.

4

5

7

8

2

3

5

6

(1)请画出上表数据的散点图,并说明其相关关系;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.

(相关公式:, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是______(填写序号)

①集合{y|y=}4个子集;

②若α≠β,则tanα≠tanβ

③若log2alog2b,则2a2b

④设函数fx=log2x的反函数为gx),则g2=1

⑤已知定义在R上的奇函数fx)在(-∞,0)内有1008个零点,则函数fx)的零点个数为2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex+2x2-3x.

(1)求证:函数f (x)在区间[0,1]上存在唯一的极值点.

(2)当x时,若关于x的不等式f (x)≥ x2+(a-3)x+1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+有如下性质:如果常数t0,那么该函数在(0]上是减函数,在[,+∞)上是增函数.

1)已知(x=x[01]利用上述性质,求函数fx)的值域;

2)对于(1)中的函数fx)和函数gx=-x+2a.若对任意x1[01],总存在x2[01],使得gx2=fx1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中[x]表示不超过x的最大整数,若直线y=kx+k(k>0)与函数y=f(x)的图象恰有三个不同的交点,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆以原点为圆心,且圆与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)若直线与圆交于两点,分别过两点作直线的垂线,交轴于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方形ABCDAD=2CD=4MN分别为ADBC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD

1)求证:直线CM⊥面DFN

2)求点C到平面FDM的距离.

查看答案和解析>>

同步练习册答案