【题目】某试验田分别种植了甲乙两种水稻,为了研究这两种水稻的产量,抽检了甲、乙两种水稻的谷穗各1000株.经统计,得到每株谷穗的粒数的频率分布直方图如图:
(Ⅰ)求乙种水稻谷穗的粒数落在[325,375)之间的频率,并将频率分布直方图补齐;
(Ⅱ)试根据频率分布直方图估计甲种水稻谷穗粒数的中位数与平均数(精确到0.1);
(Ⅲ)根据频率分布直方图,请至少从两方面对甲乙两种水稻谷穗的粒数作出评价.
【答案】解:(Ⅰ)乙种水稻谷穗的粒数落在[325,375)之间的频率为1﹣50×(0.002+0.004+0.008+0.002)=0.2,
频率分布直方图如图所示.
(Ⅱ)设中位数估计值为x,则有 50×(0.004+0.002)+(x﹣275)×0.006=0.5,解得x=308.3
由直方图得平均数的估计值为50×0.004×200+50×0.002×250+50×0.006×300+50×0.003×350+50×0.005×400=307.5,
答:中位数和平均数的估计值分别为308.3和307.5,
(Ⅲ)由于乙稻谷谷穗粒数平均值的估计值为300<307.5
故可得出结论:乙稻谷谷穗粒数总体上少于甲种水稻,又从频率分布直方图可看出乙稻谷谷穗粒数比甲种水稻要整齐.
【解析】(I)根据频率分布直方图的小矩形的面积和为1,可求落在[325,375)内的频率,利用组距为50,求出小矩形的高;
(II)根据中位数的左右两边小矩形的面积和相等,求得从左开始面积和为0.5的小矩形底边横坐标值,即为中位数;计算各个小矩形的底边中间值乘以其面积之和,即为数据的平均数;
(III)根据甲、乙两种水稻谷粒的平均数大小和频率分布情况说明.
【考点精析】本题主要考查了用样本的数字特征估计总体的数字特征的相关知识点,需要掌握用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差.在随机抽样中,这种偏差是不可避免的才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】【2017江西师范大学附属中学三模】已知函数是自然对数的底数).
(1)求函数的单调区间;
(2)若,当时,求函数的最大值;
(3)若且,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(Ⅰ)画出散点图;
(Ⅱ)求回归直线方程;
(Ⅲ)试预测广告费支出为10万元时,销售额多大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4—4;坐标系与参数方程)已知曲线的极坐标方程是,曲线经过平移变换得到曲线;以极点为原点,极轴为轴正方向建立平面直角坐标系,直线l的参数方程是 (为参数).
(1)求曲线, 的直角坐标方程;
(2)设直线l与曲线交于、两点,点的直角坐标为(2,1),若,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?
(Ⅱ)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(Ⅲ)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.
年级名次 是否近视 | ||
近视 | ||
不近视 |
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?
(3)在(Ⅱ)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,并且在这人中任取人,记名次在的学生人数为,求的分布列和数学期望.
7.879 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“( )”的几何解释.
A.如果a>b,b>c,那么a>c
B.如果a>b>0,那么a2>b2
C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立
D.如果a>b,c>0那么ac>bc
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com