精英家教网 > 高中数学 > 题目详情

【题目】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{an}称为斐波那契数列,则 =(
A.0
B.﹣1
C.1
D.2

【答案】A
【解析】解:a1a3﹣a22=1×2﹣1=1, a2a4﹣a32=1×3﹣22=﹣1,
a3a5﹣a42=2×5﹣32=1,

a8a10﹣a92=1
=(a1a3+a2a4+…a8a10)﹣(a22+a32+…+a92)=0
故选:A
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】这六个数字.

)能组成多少个无重复数字的四位偶数.

)能组成多少个比大的四位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.

1)求的解析式,并写出其单调递增区间;

2)求函数在区间上的零点;

3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ex﹣ex﹣x.
(1)求f(x)的单调区间;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若对所有x≥0,都有g(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在以为直径的半圆周上,有异于的六个点,直径上有异于的四个点.则:

(1)以这12个点(包括)中的4个点为顶点,可作出多少个四边形?

(2)以这10个点(不包括)中的3个点为顶点,可作出多少个三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,anan+1=2Sn , 设bn= ,若存在正整数p,q(p<q),使得b1 , bp , bq成等差数列,则p+q=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:

X

1

2

3

5

6

7

y

60

55

53

46

45

41


(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为 = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1的所有棱长都为2,点P,Q分别为棱CC1 , BC的中点,则四面体A1﹣B1PQ的体积为

查看答案和解析>>

同步练习册答案