精英家教网 > 高中数学 > 题目详情

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:A1C⊥平面BCDE;

(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

答案:
解析:

  解:(1)

  平面

  又平面

  

  又

  平面

  (2)如图建系,则

  ∴

  设平面法向量为

  则

 ∴

  ∴

  ∴

  又∵

  ∴

  ∴

  ∴与平面所成角的大小

  (3)设线段上存在点,设点坐标为,则

  则

  设平面法向量为

  则

  ∴

  ∴

  假设平面与平面垂直

  则

  ∴

  ∵

  ∴不存在线段上存在点,使平面与平面垂直


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC∥平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾二模)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的余弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

同步练习册答案