精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

【答案】B
【解析】解:∵x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,

,即 ,(n∈N)

即ω=2n+1,(n∈N)

即ω为正奇数,

∵f(x)在( )上单调,则 =

即T= ,解得:ω≤12,

当ω=11时,﹣ +φ=kπ,k∈Z,

∵|φ|≤

∴φ=﹣

此时f(x)在( )不单调,不满足题意;

当ω=9时,﹣ +φ=kπ,k∈Z,

∵|φ|≤

∴φ=

此时f(x)在( )单调,满足题意;

故ω的最大值为9,

故选:B

【考点精析】掌握正弦函数的对称性是解答本题的根本,需要知道正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x>0),m∈R.
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若函数f(x)的图象在点(1,f(x))处的切线的斜率为 ,且函数f(x)的最大值为M,求证:1<M<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是(
A.5800
B.6000
C.6200
D.6400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx(a∈R,a为常数)
(1)当a=﹣1时,若方程f(x)= 有实根,求b的最小值;
(2)设F(x)=f(x)ex , 若F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C1 (θ为参数),在以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线C2:ρsin( )=1.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)曲线C1上恰好存在三个不同的点到曲线C2的距离相等,分别求这三个点的极坐标.

查看答案和解析>>

同步练习册答案