精英家教网 > 高中数学 > 题目详情
F是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为 A,交另一条渐近线于点 B.若2
AF
=
FB
,则C的离心率是(  )
A、
2
B、2
C、
2
3
3
D、
14
3
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设一渐近线OA的方程为y=
b
a
x,设A(m,
b
a
m),B(n,-
bn
a
),由 2
AF
=
FB
,求得点A的坐标,再由FA⊥OA,斜率之积等于-1,求出a2=3b2,代入e=
c
a
=
a2+b2
a
进行运算.
解答: 解:由题意得右焦点F(c,0),设一渐近线OA的方程为y=
b
a
x,
则另一渐近线OB的方程为 y=-
b
a
x,
设A(m,
bm
a
),B(n,-
bn
a
),
∵2
AF
=
FB

∴2(c-m,-
bm
a
)=(n-c,-
bn
a
),
∴2(c-m)=n-c,-
2bm
a
=-
bn
a

∴m=
3
4
c,n=
3c
2

∴A(
3c
4
3bc
4a
 ).
由FA⊥OA可得,斜率之积等于-1,即
3bc
4a
-0
3c
4
-c
b
a
=-1,
∴a2=3b2,∴e=
c
a
=
a2+b2
a
=
2
3
3

故选C.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得点A的坐标是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
2+i
2-i
(i为虚数单位)的虚部为(  )
A、
3
5
B、
4
5
C、
3
5
i
D、
4
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
6
)+cosx.
(1)求函数f(x)的最小正周期;
(2)若α是第一象限角,且f(α+
π
3
)=
4
5
,求tan(α-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

贵州省2014年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(1)求这50名男生身高在172cm以上(含172cm)的人数;
(2)求全省高中男生身高排名(从高到低) 前130名中最低身高是多少;
(3)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全省前130名的人数记为X,求X的数学期望.
参考数据:
若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=5sin(
π
6
-
π
3
x)的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)方程2x3-6x2+3=0有几个解?如果有解,全部解的和为多少?
(2)探究方程2x3-6x2+5=0,2x3-6x2+8=0的全部解的和,你由此可以得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x+2|
+x
,若函数g(x)=f(x)-2|x|-m有四个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:x+|x-1|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是以O为圆心的单位圆上的动点,且|
AB
|=
2
,则
OB
AB
=(  )
A、-1
B、1
C、-
2
2
D、
2
2

查看答案和解析>>

同步练习册答案