13£®PM2.5ÊÇÖ¸Ðü¸¡ÔÚ¿ÕÆøÖеĿÕÆø¶¯Á¦Ñ§µ±Á¿Ö±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³ÆΪ¿ÉÈë·Î¿ÅÁ£Î¸ù¾ÝÏÖÐйú¼Ò±ê×¼GB3095-2012£¬PM2.5ÈÕ¾ùÖµÔÚ35΢¿Ë/Á¢·½Ã×ÒÔÏ¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£»ÔÚ35¡«75΢¿Ë/Á¢·½Ã×Ö®¼ä¿ÕÆøÖÊÁ¿Îª¶þ¼¶£»ÔÚ75΢¿Ë/Á¢·½Ã×ÒÔÉÏ¿ÕÆøÖÊÁ¿Îª³¬±ê£®
´Óij×ÔÈ»±£»¤Çø2012ÄêÈ«ÄêÿÌìµÄPM2.5¼à²âÖµÊý¾ÝÖÐËæ»úµØ³éÈ¡12ÌìµÄÊý¾Ý×÷ΪÑù±¾£¬¼à²âֵƵÊýÈ羥ҶͼËùʾ£¨Ê®Î»Îª¾¥£¬¸öλΪҶ£©£º
£¨I£©Çó¿ÕÆøÖÊÁ¿Îª³¬±êµÄÊý¾ÝµÄƽ¾ùÊýÓë·½²î£»
£¨II£©´Ó¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÊý¾ÝÖÐÈÎÈ¡2¸ö£¬ÇóÕâ2¸öÊý¾ÝµÄºÍСÓÚ100µÄ¸ÅÂÊ£»
£¨III£©ÒÔÕâ12ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æ2012ÄêµÄ¿ÕÆøÖÊÁ¿Çé¿ö£¬¹À¼Æ2012Ä꣨366Ì죩´óÔ¼ÓжàÉÙÌìµÄ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶£®

·ÖÎö £¨I£©Óɾ¥Ò¶Í¼Çó³ö¿ÕÆøÖÊÁ¿Îª³¬±êµÄÊý¾Ý£¬ÓÉ´ËÄÜÇó³ö¿ÕÆøÖÊÁ¿Îª³¬±êµÄÊý¾ÝµÄƽ¾ùÊýÓë·½²î£®
£¨II£©Óɾ¥Ò¶Í¼Çó³ö¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÊý¾Ý£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³ö´Ó¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÊý¾ÝÖÐÈÎÈ¡2¸ö£¬Õâ2¸öÊý¾ÝºÍСÓÚ100µÄ¸ÅÂÊ£®
£¨III£©Óɾ¥Ò¶Í¼Çó³ö¿ÕÆøÖÊÁ¿ÎªÒ»¼¶»ò¶þ¼¶µÄÊý¾Ý£¬´Ó¶øµÃµ½¿ÕÆøÖÊÁ¿ÎªÒ»¼¶»ò¶þ¼¶µÄƵÂÊ£¬ÓÉ´ËÄÜÇó³ö2012ÄêµÄ366ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄÌìÊý£®

½â´ð ½â£º£¨I£©¿ÕÆøÖÊÁ¿Îª³¬±êµÄÊý¾ÝÓÐËĸö£º77£¬79£¬84£¬88
ƽ¾ùÊýΪ$\overline x=\frac{77+79+84+88}{4}=82$£¨2·Ö£©
·½²îΪ${s^2}=\frac{1}{4}¡Á[{£¨77-82£©^2}+{£¨79-82£©^2}+{£¨84-82£©^2}+{£¨88-82£©^2}]=18.5$£¨4·Ö£©
£¨II£©¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÊý¾ÝÓÐÎå¸ö£º47£¬50£¬53£¬57£¬68
ÈÎÈ¡Á½¸öÓÐÊ®ÖÖ¿ÉÄܽá¹û£º{47£¬50}£¬{47£¬53}£¬{47£¬57}£¬{47£¬68}£¬{50£¬53}£¬
{50£¬57}£¬{50£¬68}£¬{53£¬57}£¬{53£¬68}£¬{57£¬68}£®
Á½¸öÊý¾ÝºÍСÓÚ100µÄ½á¹ûÓÐÒ»ÖÖ£º{47£¬50}£®
¼Ç¡°Á½¸öÊý¾ÝºÍСÓÚ100¡±ÎªÊ¼þA£¬Ôò$P£¨A£©=\frac{1}{10}$
¼´´Ó¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÊý¾ÝÖÐÈÎÈ¡2¸ö£¬Õâ2¸öÊý¾ÝºÍСÓÚ100µÄ¸ÅÂÊΪ$\frac{1}{10}$£¨8·Ö£©
£¨III£©¿ÕÆøÖÊÁ¿ÎªÒ»¼¶»ò¶þ¼¶µÄÊý¾Ý¹²8¸ö£¬
ËùÒÔ¿ÕÆøÖÊÁ¿ÎªÒ»¼¶»ò¶þ¼¶µÄƵÂÊΪ$\frac{8}{12}=\frac{2}{3}$£¨10·Ö£©
$336¡Á\frac{2}{3}=244$£¬
ËùÒÔ2012ÄêµÄ366ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄÌìÊý¹À¼ÆΪ244Ì죮£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éƽ¾ùÊý¡¢·½²î¡¢¸ÅÂʵÄÇ󷨣¬ÊÇÖеµÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍÖ®Ò»£¬½âÌâʱҪעÒ⾥Ҷͼ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨2a-1£©x+7a-2£¬x£¼1}\\{-a{x}^{2}-1£¬x¡Ý1}\end{array}\right.$ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§[$\frac{1}{5}$£¬$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$£¬$\overrightarrow{AF}$=$\frac{1}{2}$$\overrightarrow{AD}$£¬BFÓëDE½»ÓÚµãM£¬Éè$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AD}$=$\overrightarrow{b}$£®
£¨1£©ÓÃ$\overrightarrow{a}$£¬$\overrightarrow{b}$±íʾ$\overrightarrow{AM}$£»
£¨2£©ÔÚÏ߶ÎABÉÏÈ¡Ò»µãP£¬ÔÚÏ߶ÎADÉÏÈ¡Ò»µãQ£¬Ê¹PQ¹ýµãM£¬Éè$\overrightarrow{AP}$=p$\overrightarrow{AB}$£¬$\overrightarrow{AQ}$=q$\overrightarrow{AD}$£¬ÇóÖ¤£º$\frac{1}{7p}$+$\frac{3}{7q}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÊýÁÐ{an}µÄÇ°nÏîºÍSn£¬Âú×ãSn=4an+1£¬Ôòan=-$\frac{1}{3}$¡Á$£¨\frac{4}{3}£©^{n-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ö¸³öº¯Êýf£¨x£©=$\frac{{x}^{2}+4x+5}{{x}^{2}+4x+4}$µÄµ¥µ÷Çø¼ä£¬²¢±È½Ïf£¨-¦Ð£©Óëf£¨-$\frac{\sqrt{2}}{2}$£©µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®É躯Êýy=f£¨x£©¶¨ÒåÓòΪ{x|x¡ÊRÇÒx¡Ù1}£¬ÒÑÖªf£¨x+1£©ÎªÆ溯Êý£¬µ±x£¼1ʱ£¬f£¨x£©=2x2-x+1£¬Ôòx£¾1ʱ£¬f£¨x£©µÄµÝ¼õÇø¼äΪ£¨¡¡¡¡£©
A£®[$\frac{5}{4}$£¬+¡Þ£©B£®£¨1£¬$\frac{5}{4}$]C£®[$\frac{7}{4}$£¬+¡Þ£©D£®£¨1£¬$\frac{7}{4}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®´Ó»ìÓÐ4¼þ´ÎÆ·µÄ20¼þÉÌÆ·ÖгéÈ¡3¼þ£¬ÒÑÖªÓÐ1¼þÊÇ´ÎÆ·£¬Çó3¼þ¶¼ÊÇ´ÎÆ·µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®º¯Êýf£¨x£©¾ßÓÐÈçÏÂÐÔÖÊ£º¶Ôÿ¸öʵÊýx£¬¶¼ÓÐf£¨x£©+f£¨x-1£©=x2£®Èç¹ûf£¨19£©=94£¬ÄÇôf£¨94£©³ýÒÔ1000µÄÓàÊýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ln£¨1+x£©-axµÄͼÏóÔÚx=1´¦µÄÇÐÏßÓëÖ±Ïßx+2y-1=0ƽÐУ®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èô·½³Ìf£¨x£©=$\frac{1}{4}$£¨m-3x£©ÔÚ[2£¬4]ÉÏÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®£¨²Î¿¼Êý¾ÝIn3¡Ö1.0986
£¬In4¡Ö1.3863£¬In5¡Ö1.6094£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸