精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C:y2=8x的焦点为F,过F作倾斜角为60°的直线l.
(1)求直线l的方程;
(2)求直线l被抛物线C所截得的弦长.

【答案】
(1)解:抛物线y2=8x的焦点F为(2,0),直线的斜率k=

代入点斜式方程得:y= (x﹣2),即 =0


(2)解:设直线与抛物线的交点为A(x1,y1),B(x2,y2),

由直线与抛物线消去y得3x2﹣20x+12=0

所以x1+x2=

由抛物线的定义可得,|AB|=x1+x2+p=

即直线被抛物线所截得的弦长为


【解析】(1)求得抛物线的焦点,可得直线AB的方程;(2)由直线与抛物线消去y得3x2﹣20x+12=0,运用韦达定理和抛物线的定义,即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2
(1)求x<0时f(x)的解析式;
(2)问是否存在正数a,b,当x∈[a,b]时,g(x)=f(x),且g(x)的值域为[ ]?若存在,求出所有的a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣2x , 若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C:4x2﹣y2=4及直线l:y=kx﹣1
(1)求双曲线C的渐近线方程及离心率;
(2)直线l与双曲线C左右两支各有一个公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095﹣2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

频数

3

1

1

1

1

3


(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;
(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级.(精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn表示等差数列{an}的前n项的和,且S4=S9 , a1=﹣12
(1)求数列的通项an及Sn
(2)求和Tn=|a1|+|a2|+…+|an|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月29日,中国自主研制系全球最大水陆两栖飞机AG600将于2017年5月计划首飞,AG600飞机的用途很多,最主要的是森林灭火、水上救援、物资运输、海洋探测、根据灾情监测情报部门监测得知某个时间段全国有10起灾情,其中森林灭火2起,水上救援3起,物资运输5起,现从10起灾情中任意选取3起.

(1)求三种类型灾情中各取到1个的概率;

(2)设表示取到的森林灭火的数目,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案