精英家教网 > 高中数学 > 题目详情

【题目】动物园需要用篱笆围成两个面积均为50 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m,每个长方形平行于墙的边长也不小于2m

1)设所用篱笆的总长度为l,垂直于墙的边长为x.试用解析式将l表示成x的函数,并确定这个函数的定义域;

2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?

【答案】1.2)当垂直于墙的边长为时,所用篱笆的总长度最小,最小为m.

【解析】

1)由题意得每个长方形平行于墙的边长,表示出;由,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的篱笆的总长度最小,从而求解.

1)由题得每个长方形平行于墙的边长

所以函数的定义域为

2,当且仅当,即时取等号,

故当垂直于墙的边长为时,所用篱笆的总长度最小,篱笆的总长度最小是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出 ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万
元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(﹣30,0),且C(x)的最小值是﹣75,若年产量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC30°BM⊥ACAC 于点 MEA⊥平面ABCFC//EAAC4EA3FC1

1)证明:EM⊥BF

2)求平面 BEF 与平面ABC 所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为( ,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f (x)的定义域为D,如果存在非零常数T,对于任意 x∈D,都有f(x+T)=Tf (x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f( x)的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;
②函数f(x)=x是“似周期函数”;
③函数f(x)=2x是“似周期函数”;
④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.
其中是真命题的序号是 . (写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________

【答案】5.

【解析】

设数列的首项为,则,所以,故该数列的首项为,所以答案应填:

【考点定位】等差中项.

型】填空
束】
15

【题目】对于不等式,则对区间上的任意x都成立的实数t的取值范围是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线的斜率为.

(1)求的值,并讨论上的单调性;

(2)设若对任意,总存在使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案