精英家教网 > 高中数学 > 题目详情
15.已知A(5,-3),B(-1,3),点C在线段AB上,且$\frac{CB}{AB}$=$\frac{1}{3}$,则点C坐标是(1,1).

分析 根据题意,画出图形,结合图形得出$\overrightarrow{CB}$=$\frac{1}{3}$$\overrightarrow{AB}$,设出点C的坐标,利用向量相等,求出C的坐标.

解答 解:∵点C在线段AB上,且$\frac{CB}{AB}$=$\frac{1}{3}$,
如图所示,
∴$\overrightarrow{CB}$=$\frac{1}{3}$$\overrightarrow{AB}$,
设C(x,y),
则(-1-x,3-y)=$\frac{1}{3}$(-1-5,3+3),
∴$\left\{\begin{array}{l}{-1-x=-2}\\{3-y=2}\end{array}\right.$,
解得x=1,y=1;
∴点C坐标是(1,1).
故答案为:(1,1).

点评 本题考查了平面向量的应用问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设a=0.82.1,b=21.1,c=log23,则(  )
A.b<c<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C的对边分别是a、b、c,且A=60°,C=45°,c=$\sqrt{2}$,求b及S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα是方程5x2-7x-6=0的根,且α∈($\frac{π}{2}$,π),求
(1)$\frac{sin(\frac{π}{2}-α)•cos(3π-α)•ta{n}^{2}(π+α)}{sin(α+2π)•sin(2π-α)•tan(π-α)}$的值;
(2)求sin$\frac{10}{3}$π-$\sqrt{2}$cos(-$\frac{19}{4}$π)+tan(-$\frac{22}{3}$π)cos$\frac{5}{3}$π的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:(sinα±cosα)2=1±sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A为钝角,AB=1,AC=3,AD为BC边上的高,已知$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x的取值范围为(  )
A.($\frac{3}{4}$,$\frac{9}{10}$)B.($\frac{1}{2}$,$\frac{9}{10}$)C.($\frac{3}{5}$,$\frac{3}{4}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x2+y2-2ax-4ay+4a2=0,求证:
(1)不论a取何值,上述圆的圆心在同一条直线上.
(2)不论a取何值,上述圆都有公切线,并求公切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正偶数列有一个有趣的现象:(1)2+4=6;(2)8+10+12=14+16;(3)18+20+22+24=26+28+30,按照这样的规律,则72在第6个等式中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式ax2+bx-1<0的解集为{x|-1<x<2},则a+b=(  )
A.6B.4C.2D.0

查看答案和解析>>

同步练习册答案