精英家教网 > 高中数学 > 题目详情

【题目】已知函数),

(1)求函数的单调区间

(2)当的两个极值点为).

证明:

恰为的零点的最小值

【答案】(1)当的单调增区间为单调减区间为,当的单调递增区间为;(2)证明见解析;

【解析】

试题分析:(1)对函数求导,对参数分类讨论,利用导数的正负求得函数的单调区间(2)对函数求导得,得的两根,即为方程的两根;利用韦达定理得,令),由,得,两边同时除以,得,且,求得的取值范围,从而证得结论;的零点,代入相减得,故,令),,求导后利用函数的单调性求得其最小值,从而求得所求结果.

试题解析:(1)函数

时,由解得,即当时,单调递增;

解得,即当时,单调递减;

时,,故,即上单调递增;

时,的单调增区间为,单调减区间为

时,的单调递增区间为

(2),则

的两根,即为方程的两根;

),由,得

因为,两边同时除以,得,且

,解得,即

②∵的零点,

两式相减得

),

上是减函数,

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3ax-1,a≠0.

(1)求f(x)的单调区间;

(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形与正三角形的边长均为2,它们所在平面互相垂直, ,且

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数上的最小值;

(2)对一切恒成立,求实数的取值范围;

(3)探讨函数是否存在零点?若存在,求出函数的零点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;

(2)用表示未来3天内日销售量不低于8吨的天数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,侧棱底面 的中点.

(1)求二面角的平面角的余弦值;

(2)在被上是否存在点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中放有的黑球和白球,其中黑球4个,白球5个.

(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率.

(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.

(3)从盒中不放回的每次摸一球,若取到白球则停止摸球,求取到第三次时停止摸球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东亚运动会将于2013106日在天津举行.为了搞好接待工作,组委会打算学习北京奥运会招募大量志愿者的经验,在某学院招募了16名男志愿者和14名女志愿者,调查发现,男女志愿者中分别有10人和6人喜爱运动,其余人不喜欢运动.

(1)根据以上数据完成以下2×2列联表:

喜爱运动

不喜爱运动

总计

10

16

6

14

总计

30

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?

(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?

参考公式:K2,其中

nabcd.

参考数据:

P(K2k)

0.40

0.25

0.10

0.010

k

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:

(1)由以上统计数据填下面列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;

(2)若对年龄在的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

查看答案和解析>>

同步练习册答案