精英家教网 > 高中数学 > 题目详情

【题目】微信作为一款社交软件已经在支付、理财、交通、运动等各方面给人们的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.先生朋友圈里有大量好友使用了“微信运动”这项功能,他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:

步数

性别

3

4

5

4

3

1

3

5

3

2

5

2

1)以样本估计总体,视样本频率为概率,在先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有名,求的分布列和数学期望;

2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?

运动达人

运动懒人

总计

总计

附:,其中

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

【答案】1)分布列见解析,;(2)没有.

【解析】

(1)利用二项分布可求的分布列和数学期望.

(2)根据题设中的数据可得列联表,再由公式可计算得到的观察值,最后根据临界值表可得没有90%以上的把握认为“评定类型”与“性别”有关.

(1)在先生的男性好友中任意选取1名,其中走路步数不低于6000的概率为可能取值分别为0,1,2,3,

的分布列为

0

1

2

3

(也可写成),∴.

(2)完成2×2列联表

运动达人

运动懒人

总计

4

16

20

7

13

20

总计

11

29

40

的观测值

∴据此判断没有90%以上的把握认为“评定类型”与“性别”有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为正方形的四棱锥中,平面为棱上一动点,.

1)当中点时,求证:平面

2)当平面时,求的值;

3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为正方形的四棱锥P-ABCD侧棱PD⊥底面ABCDPD=DC点E线段PC的中点

(1)求异面直线APBE所成角的大小;

(2)若点F在线段PB上,使得二面角F-DE-B的正弦值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义城为D,若满足条件:存在,使上的值城为),则称k倍函数,给出下列结论:①“1倍函数;②“2倍函数:③“3倍函数.其中正确的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某山地车训练中心有一直角梯形森林区域,其四条边均为道路,其中千米,千米,千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从地出发匀速前往地,其中甲的行驶路线是,速度为千米/小时,乙的行驶路线是,速度为千米/小时.

1)若甲、乙两名特训队员到达地的时间相差不超过分钟,求乙的速度的取值范围;

2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是千米.若乙先于甲到达地,且乙从地到地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量)的数据作了初步统计,得到如下数据:

年份

年宣传费(万元)

年销售量(吨)

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式).对上述数据作了初步处理,得到相关的值如表:

1)根据所给数据,求关于的回归方程;

2)已知这种产品的年利润的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?

附:对于一组数据,…,,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案