【题目】微信作为一款社交软件已经在支付、理财、交通、运动等各方面给人们的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.先生朋友圈里有大量好友使用了“微信运动”这项功能,他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:
步数 性别 | ||||||
男 | 3 | 4 | 5 | 4 | 3 | 1 |
女 | 3 | 5 | 3 | 2 | 5 | 2 |
(1)以样本估计总体,视样本频率为概率,在先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有名,求的分布列和数学期望;
(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动懒人”.根据题意完成下面的2×2列联表,并据此判断能否有90%以上的把握认为“评定类型”与“性别”有关?
运动达人 | 运动懒人 | 总计 | |
男 | |||
女 | |||
总计 |
附:,其中
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面为正方形的四棱锥中,平面,为棱上一动点,.
(1)当为中点时,求证:平面;
(2)当平面时,求的值;
(3)在(2)的条件下,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为正方形的四棱锥P-ABCD中,侧棱PD⊥底面ABCD,PD=DC,点E是线段PC的中点.
(1)求异面直线AP与BE所成角的大小;
(2)若点F在线段PB上,使得二面角F-DE-B的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义城为D,若满足条件:存在,使在上的值城为(且),则称为“k倍函数”,给出下列结论:①是“1倍函数”;②是“2倍函数”:③是“3倍函数”.其中正确的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某山地车训练中心有一直角梯形森林区域,其四条边均为道路,其中,,千米,千米,千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从地出发匀速前往地,其中甲的行驶路线是,速度为千米/小时,乙的行驶路线是,速度为千米/小时.
(1)若甲、乙两名特训队员到达地的时间相差不超过分钟,求乙的速度的取值范围;
(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是千米.若乙先于甲到达地,且乙从地到地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费(万元) | ||||||
年销售量(吨) |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式().对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于的回归方程;
(2)已知这种产品的年利润与,的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com