【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式的n的最小值.
【答案】(1),n∈N*;(2)11
【解析】
(1)易求得=1,由题意,所以,两个式子做差变形可得递推关系式。根据等比数列的定义可得结论,利用等比数列通项公式可求得an。(2)bn是一个等比数列与一个等差数列相乘的形式,利用错位相减可求得其前n项和。再通过构造新数列以及其增减性得出满足不等式的最小n值。
(1)证明:当n=1时,a1+1=2a1,∴a1=1.∵Sn+n=2an,n∈N*,
∴当n≥2时,Sn-1+n-1=2an-1,两式相减得:an+1=2an-2an-1,即an=2an-1+1,
∴an+1=2(an-1+1),∴数列{an+1}为以2为首项,2为公比的等比数列,
∴,则,n∈N*;
(2)∵,
∴,
∴,
两式相减得:,
∴,由,得,
设,∵>0,∴数列{cn}为递增数列,
∵,,
∴满足不等式的n的最小值为11.
科目:高中数学 来源: 题型:
【题目】如图所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,点G、H分别为边CD、DA的中点,点M是线段BE上的动点.
(I)求证:GH⊥DM;
(II)当三棱锥D-MGH的体积最大时,求点A到面MGH的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为的菱形中,.点,分别在边,上,点与点,不重合,,.沿将翻折到的位置,使平面平面.
(1)求证:平面;
(2)当与平面所成的角为时,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解该校多媒体教学普及情况,根据年龄按分层抽样的方式调查了该校50名教师,他们的年龄频数及使用多媒体教学情况的人数分布如下表:
(1)由以上统计数据完成下面的列联表,并判断是否有的把握认为以40岁为分界点对是否经常使用多媒体教学有差异?
附:,.
(2)若采用分层抽样的方式从年龄低于40岁且经常使用多媒体的教师中选出6人,再从这6人中随机抽取2人,求这2人中至少有1人年龄在30-39岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段,,…,后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com