精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=2
2

(Ⅰ)求证:EF平面A1BC1
(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.
证明:(Ⅰ)连接AD1,在长方体ABCD-A1B1C1D1中,
AB
.
.
D1C1
,则四边形ABC1D1是平行四边形,
∴AD1BC1
又∵E,F分别是AD,DD1的中点
∴AD1EF,
∴EFBC1,又EF?面A1BC1,BC1?面A1BC1
∴EF平面A1BC1(3分)
(II)在平面CC1D1D中作D1Q⊥C1D交CC1于Q,
过Q作QPCB交BC1于点P,则A1P⊥C1D.(7分)
因为A1D1⊥平面CC1D1D,C1D?平面CC1D1D,
∴C1D⊥A1D1,而QPCB,CBA1D1,∴QPA1D1
又∵A1D1∩D1Q=D1,∴C1D⊥平面A1PQC1
且A1P?平面A1PQC1,∴A1P⊥C1D.(10分)
∵△D1C1QRt△C1CD,
C1Q
CD
=
D1C1
C1C
,∴C1Q=
2

又∵PQBC,
∴PQ=
1
2
BC=1.
∵四边形A1PQD1为直角梯形,且高D1Q=
6

∴A1P=
(2-1)2+6
=
7
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
3
5

(1)求证:BC⊥AC1
(2)若D是AB的中点,求证:AC1平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=
1
2
AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=
6

(1)求证:AB1平面DEC.
(2)求证:A1E⊥平面DEC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=3MB,线段CE上是否存在一点N,使得MN平面DAE?若存在,求出CN的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求证:BD1⊥平面ACB1
(3)求三棱锥B-ACB1体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案