精英家教网 > 高中数学 > 题目详情
16.下面是一程序,该程序的运行结果是(  )
A.1,2B.1,1C.2,1D.2,2

分析 根据已知中的程序语句,逐步分析执行各条语句后各个变量的值,进而可得答案.

解答 解:执行A=1,B=2后,A=1,B=2,
执行x=A后,A=1,B=2,x=1,
执行A=B后,A=2,B=2,x=1,
执行B=x后,A=2,B=1,x=1,
执行PRINT A,B后,输出结论为2,1,
故选:C

点评 本题考查的知识点是顺序结构,程序语句,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)=ax.(a>0,a≠1),若f(x)在[-2,2]的最大值为16,则a=4或$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求直线l1:x-2y+1=0关于直线l:x-2y-5=0对称的直线方程l2的方程为7x-4y-28=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知中心在原点的椭圆C的一个焦点为F(0,1),离心率为$\frac{1}{2}$,则椭圆C的标准方程为$\frac{y^2}{4}+\frac{x^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若定义在x∈(-∞,0)∪(0,+∞)的偶函数y=f(x)在(-∞,0)上的解析式为$f(x)=ln(-\frac{1}{x})$,则函数y=f(x)的图象在点(2,f(2))处的切线斜率为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于任意的$m∈[\frac{1}{2},3]$,不等式t2+mt>2m+4恒成立,则实数t的取值范围是(-∞,-5)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=(3a-1)x,当m>n时,f(m)<f(n),则实数a的取值范围是($\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知M={x∈N|$\frac{6}{6-x}$∈N},则集合M的子集的个数是(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设数列{an}满足a1=0,且2an+1=1+anan+1,bn=$\frac{1}{{\sqrt{n}}}-\sqrt{\frac{{{a_{n+1}}}}{n}}$,记Sn=b1+b2+…+bn,则S100=(  )
A.$1-\frac{1}{{\sqrt{101}}}$B.$\frac{9}{10}$C.$\frac{99}{100}$D.$\frac{1}{10}-\frac{1}{{\sqrt{101}}}$

查看答案和解析>>

同步练习册答案