精英家教网 > 高中数学 > 题目详情
10.函数f(x)=$\sqrt{2-{2}^{x}}$+$\frac{1}{lnx}$的定义域为(0,1).

分析 函数f(x)=$\sqrt{2-{2}^{x}}$+$\frac{1}{lnx}$有意义,只需2-2x≥0,lnx≠0,x>0,解不等式即可得到所求定义域.

解答 解:函数f(x)=$\sqrt{2-{2}^{x}}$+$\frac{1}{lnx}$有意义,
只需2-2x≥0,lnx≠0,x>0,
解得x≤1,且x≠1,x>0,
则函数的定义域为(0,1).
故答案为:(0,1).

点评 本题考查函数的定义域的求法,注意偶次根式被开方数非负,分式分母不为0,对数真数大于0,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(xy)=f(x)+f(y)”的函数是(  )
A.幂函数B.对数函数C.指数函数D.余弦函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是两个相互垂直的单位向量,且$\overrightarrow a=-2\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=\overrightarrow{e_1}-λ\overrightarrow{e_2}$.
(Ⅰ)若$\overrightarrow a∥\overrightarrow b$,求λ的值;
(Ⅱ)若$\overrightarrow a⊥\overrightarrow b$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为4cm,则一质点自点A出发,沿着三棱柱的侧面,绕行两周到达点A1的最短路线的长为(  )
A.4$\sqrt{10}$cmB.12$\sqrt{3}$cmC.2$\sqrt{13}$cmD.13cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是一个算法流程图,则输出的结果S为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且抛物线y2=4$\sqrt{3}$x的焦点恰好使椭圆C的一个焦点.
(1)求椭圆C的方程
(2)过点D(0,3)作直线l与椭圆C交于A,B两点,点N满足$\overrightarrow{ON}$=$\overrightarrow{OA}+\overrightarrow{OB}$(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax-1+4(其中a>0且a≠1)的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

同步练习册答案