精英家教网 > 高中数学 > 题目详情
5.如图,在平行四边形ABCD中,∠ABD=90°,2AB2+BD2=4,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的表面积为(  )
A.B.C.12πD.16π

分析 确定三棱锥A-BCD的外接球的直径,根据2AB2+BD2-4=0,确定三棱锥A-BDC的外接球的半径,即可求得棱锥A-BDC的外接球的表面积.

解答 解:∵平行四边形ABCD中,AB⊥BD,沿BD折成直二面角A-BD-C,

∴三棱锥A-BCD的外接球的直径为AC,且AC2=AB2+BD2+CD2=2AB2+BD2=4,
∴三棱锥A-BDC的外接球的半径为1,
∴三棱锥A-BDC的外接球的表面积是4π
故选:A.

点评 本题考查球的表面积,考查学生的计算能力,解题的关键是确定三棱锥A-BCD的外接球的直径,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知两点O(0,0),A(6,0),圆C以线段OA为直径.
(1)求圆C的方程;
(2)若直线1:x-y-1=0与圆C相交于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则S△ABC等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设集合M={a1,a2,…an}(n∈N+),对M的任意非空子集A,定义f(A)为A中的最大元素,当A取遍M的所有非空子集时,对应的f(A)的和为Tn,若an=2n-1则:①T3=21,②Tn=$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\sqrt{3}sin2x+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$.
(Ⅰ)求函数f(x)图象的对称轴方程;
(Ⅱ)求函数f(x)在区间$[-\frac{π}{12},\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是(  ) 
A.$2\sqrt{2}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将单位圆经过伸缩变换:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲线C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1
(1)求实数λ,μ的值;
(2)以原点O 为极点,x 轴为极轴建立极坐标系,将曲线C 上任意一点到极点的距离ρ(ρ≥0)?表示为对应极角θ(0≤θ<2π)的函数,并探求θ为何值时,ρ取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设定义在R上的函数f(x)满足以下条件:
(1)f(x)+f(-x)=0;
(2)f(x+1)=f(x-1);   
(3)当0≤x≤1时,f(x)=2x-1,
则$f(\frac{1}{2})+f(\frac{3}{2})+f(1)+f(2)+f(4)+f(\frac{9}{2})$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x≤π时,f(x)=0.则f($\frac{23π}{6}$)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案