精英家教网 > 高中数学 > 题目详情

【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.

(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?

(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.

【答案】(1)轮船海里/小时的速度航行,相遇时轮船航距最短;(2)航向为北偏东,航速为30海里/小时,轮船能在最短时间与轮船相遇.

【解析】试题分析:1)设两轮船在处相遇,在 中,利用余弦定理得出关于t的函数,从而得出的最小值及其对应的,得出速度;
2)利用余弦定理计算航行时间,得出 距离,从而得出 的度数,得出航行方案.

试题解析:(1)设相遇时轮船航行的距离为海里,则

.

∴当时,

即轮船海里/小时的速度航行,相遇时轮船航距最短.

(2)设轮船与轮船处相遇,则

.

,即,解得,又

时, 最小且为,此时

∴航向为北偏东,航速为30海里/小时,

轮船能在最短时间与轮船相遇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正四面体的棱长为为棱的中点,过作其外接球的截面,则截面面积的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x2 , x∈[1,2],与函数y=x2 , x∈[﹣2,﹣1]即为“同族函数”.下面的函数解析式也能够被用来构造“同族函数”的是(
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x),对任意a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,当x>0时,f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判断函数f(x)在R上的单调性,并给予证明;
(3)若f(﹣kx2)+f(kx﹣2)<2对任意的x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式中,正确的个数是(
={0};②{0};③∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}{1,2,3};⑧{a,b}={b,a}.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,

,圆与椭圆在第一象限交于点,在第二象限交于点.

(1)求椭圆的方程;

(2)求的最小值,并求出此时圆的方程;

(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:

为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若抛物线的焦点是椭圆左顶点,求此抛物线的标准方程;

(2)若某双曲线与椭圆共焦点,且以为渐近线,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;

(2)试估计这批小龙虾的平均重量;

(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:

等级

一等品

二等品

三等品

重量(

单价(元/只)

1.2

1.5

1.8

试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?

查看答案和解析>>

同步练习册答案