精英家教网 > 高中数学 > 题目详情
(2012•温州一模)若函数f(x)=
2,x>0
x2,x≤0
,则满足f(a)=1的实数a的值为
-1
-1
分析:分段函数f(x)=
2,x>0
x2,x≤0
,因为f(a)=1,利用分类讨论方法,求出a的值;
解答:解:∵函数f(x)=
2,x>0
x2,x≤0
,因为f(a)=1,
若x>0,可得f(x)=2≠1,故x≤0,
可得a2=1,解得a=±1,因为a≤0,
所以a=-1,
故答案为-1;
点评:此题主要考查分段函数的性质及其应用,解题的过程中用到了分类讨论的思想,此题是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在矩形ABCD中,AB=8,BC=4,E,F,G,H分别为四边的中点,且都在坐标轴上,设
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直线EP与GQ的交点M的轨迹Γ的方程;
(Ⅱ)过圆x2+y2=r2(0<r<2)上一点N作圆的切线与轨迹Γ交于S,T两点,若
NS
NT
+r2=0
,试求出r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)设E为AB的中点,已知△ABC的面积为15,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
23
,则该学生在面试时得分的期望值为
15
15
分.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若圆x2+y2-4x+2my+m+6=0与y轴的两个交点A,B位于原点的同侧,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案