精英家教网 > 高中数学 > 题目详情

.
(Ⅰ)若,求的单调区间;
(Ⅱ) 若对一切恒成立,求的取值范围.

(Ⅰ)的单调递增区间为,的单调递减区间为;(Ⅱ)

解析试题分析:(Ⅰ)将代入得:
的导数,由便可得的单调区间.
(Ⅱ)
对一切恒成立等价于恒成立.
这只要求出函数的最小值即可.
试题解析:(Ⅰ)时,,故   
得:;由得:
的单调递增区间为, 的单调递减区间为
(II)
,则
.所以上单调递增, 单调递减.
所以
由此得:
时,即为  此时取任意值都成立
综上得: 
考点:1、函数的导数及其应用;2、不等关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)证明:当
(Ⅱ)设当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数为奇函数,求a的值;
(2)若,直线都不是曲线的切线,求k的取值范围;
(3)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
解不等式;(4分)
事实上:对于成立,当且仅当时取等号.由此结论证明:.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数处取得极值,且曲线在点处的切线垂直于直线
(1)求的值;
(2)若函数,讨论的单调性.

查看答案和解析>>

同步练习册答案