精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)

(Ⅰ)当时,单调增加

(Ⅱ)当时,单调减少,在单调增加;
时,
时,
(Ⅲ)时,时,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)曲线C:,过点的切线方程为,且交于曲线两点,求切线与C围成的图形的面积。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题满分15分)已知函数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)若函数在导函数的单调区间上也是单调的,求的取值范围;
(Ⅲ) 当时,设,且是函数的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(1)求为何值时,上取得最大值;
(2)设,若是单调递增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围.
(Ⅲ)若对都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.试求的值。

查看答案和解析>>

同步练习册答案