精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(0,1),$\overrightarrow c$=(2,3),若λ∈R且($\overrightarrow a$+λ$\overrightarrow b$)∥$\overrightarrow c$,则λ=2.

分析 利用向量共线定理的坐标运算性质即可得出.

解答 解:$\overrightarrow a$+λ$\overrightarrow b$=(2,1+λ),
∵($\overrightarrow a$+λ$\overrightarrow b$)∥$\overrightarrow c$,
∴3×2-2(1+λ)=0,
解得λ=2.
故答案为:2.

点评 本题考查了向量共线定理的坐标运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤4-x\\ 2x-y+1≥0\\ x-4y-4≤0\end{array}\right.$,则z=x-2y的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,3sinA=4sinB=6sinC,则cosB=$\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列数列-3,5,-7,9,-11,…的一个通项公式为an=(-1)n(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列4个函数中:
①y=2008x-1;
②y=loga$\frac{2009-x}{2009+x}$ (a>0且a≠1);
③y=$\frac{{x}^{2009}+{x}^{2008}}{x+1}$
④y=x($\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$)(a>0且a≠1).
其中既不是奇函数,又不是偶函数的是①③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四个命题:
①函数f(x)=cosxsinx的最大值为1;
②命题“?x∈R,x-2≤lgx”的否定是“?x∈R,x-2>lgx”;
③若△ABC为锐角三角形,则有sinA+sinB+sinC>cosA+cosB+cosC;
④“a≤0”是“函数f(x)=|x2-ax|在区间(0,+oo)内单调递增”的充分必要条件.
其中所有正确命题的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=ax-2,g(x)=loga|x|(a>0且a≠1),若f(4)g(-4)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{x-m}{{x}^{2}+nx+1}$是奇函数:
(1)求m、n的值:
(2)判断函数f(x)在区间[0,1]上的单调性,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,BC=4,AB=2AC,则S△ABC的最大值为$\frac{16}{3}$.

查看答案和解析>>

同步练习册答案