精英家教网 > 高中数学 > 题目详情
3.已知F为双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为$\frac{32}{5}$.

分析 设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.

解答 解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,直线AP的方程为y=$\frac{4}{1-4}$(x-4),即4x+3y-16=0,
∴点F到直线AP的距离为$\frac{|-16-16|}{\sqrt{16+9}}$=$\frac{32}{5}$,
故答案为:$\frac{32}{5}$

点评 本题考查双曲线的方程与性质,考查点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点的渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{9}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{9}=1$D.$\frac{x^2}{8}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD为等边三角形,$AB=AD=\frac{1}{2}CD$,AB⊥AD,AB∥CD,点M是PC的中点.
(I)求证:MB∥平面PAD;
(II)求二面角P-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.a>b的一个充分不必要条件是(  )
A.a=1,b=0B.$\frac{1}{a}$<$\frac{1}{b}$C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若BC=2,A=120°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的最大值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$动点M的轨迹为曲线C.
(1)求C的方程及其离心率;
(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为$\frac{\sqrt{3}}{2}$,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+y2-6x-2y+3=0的圆心到直线x+ay-1=0的距离为1,则a=(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆的方程为x2+y2+ax+2y+a2=0,要使过定点A(1,2)作圆的切线有两条,则a的取值范围是(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=\frac{6}{{{2^x}+{3^x}}}(-1≤x≤1)$的最小值为(  )
A.3B.$\frac{6}{5}$C.$\frac{36}{5}$D.$\frac{6}{13}$

查看答案和解析>>

同步练习册答案