精英家教网 > 高中数学 > 题目详情
(1)求值
1-2sin40°cos40°
cos40°-
1-sin250°

(2)化简
(1-tanθ)cos2θ+(1+cotθ)sin2θ
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:(1)1=sin240°+cos240°,利用同角三角函数的关系式化简即可;
(2)利用同角三角函数的关系式化简即可求值.
解答: 解:(1)原式=
cos40°-sin40°
cos40°-cos50°
=
cos40°-sin40°
cos40°-sin40°
=1
(2)原式=
cos2θ-tanθ•cos2θ+sin2θ+cotθsin2θ
=1
点评:本题主要考察了三角函数中的恒等变换应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,点M到点F(2,0)的距离比它到y轴的距离多2,记点M的轨迹为C.
(1)求轨迹为C的方程;
(2)设斜率为k的直线l过定点P(-4,2),求直线l与轨迹C恰好有一个公共点,两个公共点,三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x||x|<5},T={x|x2+4x-21<0},则S∩T=(  )
A、{x|-7<x<-5}
B、{x|3<x<5}
C、{x|-5<x<3}
D、{x|-7<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x,x<0
x
,x≥0
,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(  )
A、[
1
2
,+∞)
B、(0,+∞)
C、C(0,1)
D、(0,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式是an=
2n-1
2n
,其前n项和Sn=
321
64
,则项数n=(  )
A、13B、10C、9D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e -x,其中e为自然对数的底数.
(1)判断函数f(x)定义在R上的奇偶性,并证明;
(2)若关于x的不等式f(x)≥mex在[-1,1]上恒成立,试判断loga(-2t2+2t)的值的正负号,其中t∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+1
-ax,(a>0),试确定:当a取什么值时,函数f(x)在[0,+∞)上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x2
a
2
n
-y2=1(an>0,n∈N*)的一个焦点为F(
n2+1
,0).
(1)求an
(2)令bn=
1
anan+1
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=Asin(ωx+
π
2
)+b(A>0,ω>0)的最小正周期为
π
2
,在一个周期内最大值和最小值之和为2,且方程f(x)=A的三个最小的不同正根按照从小到大的顺序恰好构成等比数列.
(1)试求函数f(x)的解析式;
(2)将y=f(x)的图象向下平移一个单位,再向左平移
π
12
个单位,得到函数y=g(x),试在如图所给的直角坐标系中画出函数y=g(x)在一个周期内的图象.

查看答案和解析>>

同步练习册答案