【题目】已知椭圆()的右焦点为F,左顶点为A,离心率,且经过圆O:的圆心.过点F作不与坐标轴重合的直线和该椭圆交于MN两点,且直线分别与直线交于PQ两点.
(1)求椭圆的方程;
(2)证明:为直角三角形.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和圆,抛物线的焦点为.
(1)求的圆心到的准线的距离;
(2)若点在抛物线上,且满足, 过点作圆的两条切线,记切点为,求四边形的面积的取值范围;
(3)如图,若直线与抛物线和圆依次交于四点,证明:的充要条件是“直线的方程为”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )
A.33B.56C.64D.78
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是一切实数的函数,其图象是连续不断的,且存在常数()使得对任意实数都成立,则称是一个“-伴随函数”,有下列关于“-伴随函数”的结论:①是常数函数唯一一个“-伴随函数”;②“-伴随函数”至少有一个零点;③是一个“-伴随函数”;其中正确结论的个数( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m,n是两条不同的直线,,是两个不同的平面,给出下列命题:
①若,,,则;
②若,,,则或;
③若,,,则或;
④若,,,,则且;
其中正确命题的序号是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某高中学生的体能测试结果中,随机抽取100名学生的测试结果,按体重分组得到如图所示的频率分布直方图.
(1)若该校约有的学生体重不超过“标准体重”,试估计的值,并说明理由;
(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com